• Title/Summary/Keyword: 탑재

Search Result 4,792, Processing Time 0.03 seconds

Investigating the Relationship Between Vehicle Front Images and Voice Assistants (자동차 전면부와 음성 어시스턴트의 스타일 관계 분석)

  • Min-Jung Park;So-Yeong Min;Tae-Su Kim;Hyeon-Jeong Suk
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • In the context of the increasing applications of voice assistants in vehicles, we focused on the association between the visual appeal of the cars and the acoustic characteristics of the voice assistants. This study aimed to investigate the relationship between the visual appeal of the vehicle and the voice assistant based on their emotional characteristics. A total of 15 adjectives were used to assess the emotional characteristics of 12 types of cars and six types of voices. An online interview was carried out, instructing participants to match three adjectives with the presented car images or voices. This was followed with a brief interview to allow the participants to reflect on the adjective matches. Based on the assessments, we performed principal component analysis (PCA) to determine factors. We aimed to deploy the cars and voices and analyze the patterns of clustering. The PCA analysis revealed two factors profiled as "Light-Heavy" and "Comfortable-Radical." Both car and voice stimuli were deployed in a two-dimensional space showing the internal relationship within and between the two substances. Based on the coordination data, a hierarchical cluster grouped the 18 stimuli into four groups labeled as challenge, elegance, majesty, and vigor. This study identified two latent factors describing the emotional characteristics of both car images and voice types clustered into four groups based on their emotional characteristics. The coherent matches between car style and voice type are expected to address the design concept more successfully.

Study on Advisory Safety Speed Model Using Real-time Vehicular Data (실시간 차량정보를 이용한 안전권고속도 산정방안에 관한 연구)

  • Jang, JeongAh;Kim, HyunSuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.443-451
    • /
    • 2010
  • This paper proposes the methodology about advisory safety speed based on real-time vehicular data collected from highway. The proposed model is useful information to drivers by appling seamless wireless communication and being collected from ECU(Engine Control Unit) equipment in every vehicle. Furthermore, this model also permits the use of realtime sensing data like as adverse weather and road-surface data. Here, the advisory safety speed is defined "the safety speed for drivers considering the time-dependent traffic condition and road-surface state parameter at uniform section", and the advisory safety speed model is developed by considering the parameters: inter-vehicles safe stopping distance, statistical vehicle speed, and real-time road-surface data. This model is evaluated by using the simulation technique for exploring the relationships between advisory safety speed and the dependent parameters like as traffic parameters(smooth condition and traffic jam), incident parameters(no-accident and accident) and road-surface parameters(dry, wet, snow). A simulation's results based on 12 scenarios show significant relationships and trends between 3 parameters and advisory safety speed. This model suggests that the advisory safety speed has more higher than average travel speed and is changeable by changing real-time incident states and road-surface states. The purpose of the research is to prove the new safety related services which are applicable in SMART Highway as traffic and IT convergence technology.

Development of BIM and Augmented Reality-Based Reinforcement Inspection System for Improving Quality Management Efficiency in Railway Infrastructure (철도 인프라 품질관리 효율성 향상을 위한 BIM 기반 AR 철근 점검 시스템 구축)

  • Suk, Chaehyun;Jeong, Yujeong;Jeon, Haein;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.63-65
    • /
    • 2023
  • BIM and AR technologies have been assessed as a means of enhancing productivity within the construction industry, through the provision of effortless access to critical data on site, achieved via the projection of 3D models and associated information onto actual structures. However, most of the previous researches for applying AR technology in construction quality management has been performed for construction projects in general, resulting in only overall on-site management solutions. Also, a few previous researches for the application of AR in the quality management of specific elements like reinforcements focused only on simple projection, so conducting specific quality inspection was impossible. Hence, this study aimed to develop a practically applicable BIM-based AR quality management system targeted for reinforcements. For the development of this system, the reinforcement inspection items on the quality checklist used at railway construction sites were analyzed, and four types of AR functions that can effectively address these items were developed and installed. The validation result of the system for the actual railway bridge showed a degradation of projection stability. This problem was solved through model simplification and enhancement of the AR device's hardware performance, and then the normal operation of the system was validated. Subsequently, the final developed reinforcement quality inspection system was evaluated for practical applicability by on-site quality experts, and the efficiency of inspection would significantly increase when using the AR system compared to the current inspection method for reinforcements.

A Study on the Development of Educational Subjects for Nurturing Autonomous Ship Officers Using Delphi Survey (델파이 조사를 활용한 자율운항선 해기사 양성을 위한 교과목 개발에 관한 연구)

  • Son, Jang-Yun;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.33-46
    • /
    • 2023
  • The Autonomous ships are equipped with a function to judge and navigate the sea conditions on their own, so the job of the ship officer who operates it changes. The educational curriculum to nurture ship officer with the ability to operate and manage autonomous ships must also be changed. This study aimed to develop the curriculum for training autonomous ship officer by using the Delphi survey method suitable for predicting the uncertain future. Among the current 61 subjects for training ship officer identified in the Delphi survey, 32 subjects with high importance should be maintained in the training for autonomous ship officer, and subjects with low importance should be abolished or integrated into other subjects. These subjects were collectively referred to as 'general courses'. The expert panel of the Delphi survey suggested 42 items as new subjects, with 18 items of 'high', 14 items of 'middle', and 10 items of 'low'. Through in-depth analysis of these items by experts, 27 subjects were adjusted and three courses were proposed : 1)'Basic course(10 courses)' for developing basic capabilities such as basic theories for understanding advanced technology and information applied to autonomous ships, 2)'Job course(10 courses)' for practical competency directly related to autonomous ship operation, 3)'Intensive course(7 subjects)' for fostering land remote operators of autonomous ships. Since the introduction and spread of autonomous ships will progress rapidly, research to develop and supplement autonomous ship pilot training courses should be continued by reflecting the level of autonomous navigation of autonomous ships.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

A Study of the Correlation Between Nighttime Light and Individual Land Price by Province in South Korea, Using DMSP OLS Data (야간광과 남한의 시도별 개별 공시지가 총액의 상관관계 연구 - DMSP OLS 자료를 중심으로)

  • Bong Chan Kim ;Seulki Lee ;Chang-Wook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.729-741
    • /
    • 2023
  • The Operational Linescan System (OLS)sensor is a sensor aboard satellites launched through the Defense Meteorological Satellite Program (DMSP) that detects light in the visible and infrared bands emitted at night. Studies by several researchers have shown a high correlation between nighttime light data from OLS sensors and gross domestic product values. In this study, we investigated the correlation of nighttime light data with the total amount of individual land prices, which is one of the various indicators related to economic development. The study found that most cities and provinces showed a high correlation with a correlation coefficient of more than 0.7, and the correlation coefficient of 0.7837 between the total amount of individual land price and nighttime light data for the entire South Korea was also high. However, unlike other cities and provinces, Seoul has a low correlation coefficient of 0.5648 between nighttime light and the total amount of individual land price, which is analyzed as a reason that the digital number value of the OLS sensor is close to the maximum value and cannot show further brightness changes. This study is expected to help identify announced land prices in areas where announced land prices are not systematically organized and to analyze land use changes in such areas.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.

Study on Applicability of Cloth Simulation Filtering Algorithm for Segmentation of Ground Points from Drone LiDAR Point Clouds in Mountainous Areas (산악지형 드론 라이다 데이터 점군 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Seul Koo ;Eon Taek Lim ;Yong Han Jung ;Jae Wook Suk ;Seong Sam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.827-835
    • /
    • 2023
  • Drone light detection and ranging (LiDAR) is a state-of-the-art surveying technology that enables close investigation of the top of the mountain slope or the inaccessible slope, and is being used for field surveys in mountainous terrain. To build topographic information using Drone LiDAR, a preprocessing process is required to effectively separate ground and non-ground points from the acquired point cloud. Therefore, in this study, the point group data of the mountain topography was acquired using an aerial LiDAR mounted on a commercial drone, and the application and accuracy of the cloth simulation filtering algorithm, one of the ground separation techniques, was verified. As a result of applying the algorithm, the separation accuracy of the ground and the non-ground was 84.3%, and the kappa coefficient was 0.71, and drone LiDAR data could be effectively used for landslide field surveys in mountainous terrain.