• Title/Summary/Keyword: 탐지 알고리즘

Search Result 1,463, Processing Time 0.028 seconds

드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발 (Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques)

  • 류재현;한중곤;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.535-543
    • /
    • 2022
  • 농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.

실시간 동적 3차원 환경에서의 효율적인 충돌탐지 알고리즘 (Efficient Collision Detection Algorithm in Dynamic 3D Environment at Run-time)

  • 이영호;김성범;정승원;한대만;한상진;구용완
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.421-423
    • /
    • 2002
  • 본 논문에서는 실시간에 강체 운동을 하는 일반적인 모델사이의 효율적인 충돌검사 알고리즘을 제안한다. 기존의 경계볼륨 알고리즘에 계층적 구조를 적용하였다. 이는 볼록한 물체를 위한 보로노이 영역 기반의 충돌검사 알고리즘을 오목한 물체에도 적용할 수 있도록 확장한다. 추가적으로 빠르게 움직이는 물체에 대한 관통을 탐지하기 위해서 물체의 이동 경로에 대한 교차 검사를 진행한다. 구현된 알고리즘은 일반적인 응용에서 기대한 성능 향상을 얻을 수 있다.

  • PDF

퍼지인식도와 세션패턴 기반의 비정상 탐지 메커니즘 (Anomaly Detection Mechanism based on the Session Patterns and Fuzzy Cognitive Maps)

  • 류대희;이세열;김혁진;송영덕
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.9-16
    • /
    • 2005
  • 최근 인터넷 이용자들이 급격하게 증가하고 있으며, 초보수준의 일반 네트워크 사용자들도 인터넷상의 공개된 해킹 도구들을 사용하여 고도의 기술을 요하는 침입이 가능하여 해킹 문제가 더욱 심각해지고 있다. 해커들이 침입하기 위하여 취약점을 알아내려고 의도하는 다양한 형태의 침입시도를 사전에 탐지하여 침입이 일어나는 것을 미리 방어할 수 있는 침입시도탐지가 적극적인 예방 차원에서 더욱 필요하다. 기존의 포트 스캔이나 네트워크 취약점 공격에 대응하기 위한 네트워크 기반의 비정상 침입시도 탐지 알고리즘은 침입시도함지에 있어 몇 가지 한계점을 갖고 있다. 기존 알고리즘은 Slow Scan, Coordinated Scan을 할 경우 탐지할 수 없다는 것이다. 따라서 침입시도 유형에 제한을 받지 않고 침입시도에 관한 다양한 형태의 비정상 접속을 효과적으로 탐지할 수 있는 새로운 개념의 알고리즘이 요구된다. 본 논문에서는 세션 패턴과 탐지 오류율을 규칙기반으로 하는 침입시도 탐지알고리즘(Session patterns & FCM Anomaly Detector : SFAD)을 제안한다.

  • PDF

화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘 (Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement)

  • 이준구;한기선;유병문;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.35-42
    • /
    • 2013
  • 비디오 데이터를 효율적으로 검색, 정렬, 탐색, 분류하기 위해서는 프레임 간의 샷 전환 탐지가 선행되어야 한다. 프레임 간 화소 밝기와 객체 이동은 높은 탐지율을 보장하는 샷 탐지 알고리즘이 극복해야할 문제이다. 본 논문에서는 프레임의 블록화 및 객체의 이동과 프레임의 밝기를 고려하는 샷 탐지 방법을 제안한다. 먼저 연속하는 두 프레임 사이에서 발생할 수 있는 객체의 이동을 고려하여 계산된 히스토그램과 밝기 차이를 반영하는 모폴러지 팽창 연산을 이용하는 알고리즘을 제안한다. 다음으로 화소 밝기 차를 보상한 프레임 블록의 화소정보와 프레임의 전역적인 밝기 히스토그램의 변화를 함께 이용하는 샷 탐지 방법을 제안한다. 제안된 방법들은 국가기록원 소장 비디오 데이터에 대한 실험에서 화소 또는 히스토그램 기반 알고리즘에 비해 높은 샷 탐지율을 보였다.

다중화된 FBG 센서와 error-outlier 알고리즘을 이용한 복합재 평판에 대한 충격위치탐지 (Impact localization on a composite plate using multiplexed FBG sensors and error-outlier algorithm)

  • 박성용;김상우;박상윤
    • 항공우주시스템공학회지
    • /
    • 제12권6호
    • /
    • pp.32-40
    • /
    • 2018
  • 본 연구에서는 error-outlier 기반의 충격위치탐지 알고리즘과 다중화된 FBG 센서를 이용하여 탄소섬유 강화 플라스틱 복합재 평판 구조물에 대한 충격위치탐지를 수행하였다. 알고리즘의 주요 변수인 오차 임계값(ET)이 0.3 nm, 상수 수준(CL)이 110일 때 최적의 충격위치탐지 결과(최대 오차= 31.82 mm, 평균 오차= 6.31 mm)가 도출되었다. 또한 주어진 최적의 변수 조건에서의 충격위치탐지 과정과 결과를 상세히 분석하였다. 본 연구에서 제시된 다중화된 FBG 센서와 error-outlier 기반의 충격탐지 알고리즘은 복합재 구조물에 대한 충격탐지에 적합한 것으로 판단되며, 향후 다양한 구조 건전성 감시에 활용될 것으로 기대된다.

SVM과 클러스터링 기반 적응형 침입탐지 시스템 (Adaptive Intrusion Detection System Based on SVM and Clustering)

  • 이한성;임영희;박주영;박대희
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.237-242
    • /
    • 2003
  • 본 논문에서는 클러스터링을 기반으로 하는 새로운 침입탐지 알고리즘인 Kernel-ART를 제안한다. Kernel-ART는 개념벡터(concept vector)와 SVM(support vector machine)의 머서 커널(mercer-kernel)을 온라인 클러스터링 알고리즘인 ART(adaptive resonance theory)에 접목시킨 새로운 알고리즘으로서 교사학습 기반 침입탐지 시스템의 단점을 극복할 뿐만 아니라, 클러스터링 기반 침입탐지 시스템에서 요구되는 모든 평가 기준들을 만족한다. 본 논문에서 제안하는 알고리즘은 클러스터를 점증적으로 생성함으로써 여러 가지 다양한 침입 유형들을 실시간으로 탐지할 수 있다.

색상 군집화를 이용한 입술탐지 알고리즘 (A Lip Detection Algorithm Using Color Clustering)

  • 정종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.37-43
    • /
    • 2014
  • 본 논문에서는 색상 군집화를 이용한 입술탐지 알고리즘을 제안한다. RGB 색상 모델로 주어진 입력영상에서 AdaBoost 알고리즘을 이용하여 얼굴영역을 추출한 후, 얼굴영역을 Lab 컬러 모델로 변환한다. Lab 컬러 모델에서 a 성분은 입술과 유사한 색상을 잘 표현할 수 있는 반면 b 성분은 입술의 보색을 표현할 수 있기 때문에 Lab 컬러로 표현된 얼굴영역에서 a와 b 성분을 기준으로 최단 이웃(nearest neighbour) 군집화 알고리즘을 이용하여 피부 영역을 분리한 후, K-means 색상 군집화를 통해 입술 후보 영역을 추출하고, 마지막으로 기하학적 특징을 이용하여 최종적인 입술영역을 탐지하였다. 실험 결과는 제안된 방법이 강건하게 입술을 탐지함을 보인다.

클래스 불균형 데이터에 적합한 기계 학습 기반 침입 탐지 시스템 (Machine Learning Based Intrusion Detection Systems for Class Imbalanced Datasets)

  • 정윤경;박기남;김현주;김종현;현상원
    • 정보보호학회논문지
    • /
    • 제27권6호
    • /
    • pp.1385-1395
    • /
    • 2017
  • 본 논문에서는 정상과 이상 트래픽이 불균형적으로 발생하는 상황에서 기계 학습 기반의 효과적인 침입 탐지 시스템에 관한 연구 결과를 소개한다. 훈련 데이터의 패턴을 학습하여 정상/이상 패킷을 탐지하는 기계 학습 기반의 IDS에서는 훈련 데이터의 클래스 불균형 정도에 따라 탐지 성능이 현저히 차이가 날 수 있으나, IDS 개발 시 이러한 문제에 대한 고려는 부족한 실정이다. 클래스 불균형 데이터가 발생하는 환경에서도 우수한 탐지 성능을 제공하는 기계 학습 알고리즘을 선정하기 위하여, 본 논문에서는 Kyoto 2006+ 데이터셋을 이용하여 정상 대 침입 클래스 비율이 서로 다른 클래스 불균형 훈련 데이터를 구축하고 다양한 기계 학습 알고리즘의 인식 성능을 분석하였다. 실험 결과, 대부분의 지도 학습 알고리즘이 좋은 성능을 보인 가운데, Random Forest 알고리즘이 다양한 실험 환경에서 최고의 성능을 보였다.

감시정찰용 소리 센서를 위한 AMIDA 알고리즘 설계 및 성능평가 (Design and Evaluation of AMIDA Algorithm for MIC Sensor Signal Processing in USN)

  • 박홍재;이승제;하공용;김이형;김영만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.796-799
    • /
    • 2008
  • 최근 유비쿼터스 컴퓨팅과 유비쿼터스 네트워크를 활용하여 새로운 서비스들을 개발하려는 노력이 진행 중이며, 이와 관련된 기술의 중요성도 급증하고 있다. 특히 감시정찰 센서네트워크의 핵심 구성요소인 저가의 경량 센서노드에서 측정한 미가공 데이터(raw data)를 사용하여 침입 물체의 실시간 탐지, 식별, 추적 및 예측하기 위한 디지털 신호처리 기술은 주요 기술 중 하나이다. 본 논문에서는 감시정찰 센서네트워크의 핵심 구성요소인 소리센서 노드에서 측정한 소리 미가공 데이터를 사용하여 차량을 탐지할 수 있는 소리센서 디지털 신호처리 알고리즘을 설계 및 구현 한다. 알고리즘의 주 목표는 감시정찰용 센서노드의 탐지 신뢰성을 높이기 위한 높은 침입물체 탐지 성공률(success rate)과 낮은 허위신고(false alarm) 횟수를 가지는 것이다. 성능평가 결과에 의하면 제안한 AMIDA 알고리즘은 90% 이상의 탐지 성공률과 2 회 이하의 허위신고 횟수를 가지는 것을 확인할 수 있었다.

점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘 (Online anomaly detection algorithm based on deep support vector data description using incremental centroid update)

  • 이기배;고건혁;이종현
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.199-209
    • /
    • 2022
  • 일반적인 비정상 탐지 알고리즘은 사전 데이터를 이용하여 학습된다. 따라서 시간에 따른 정상 데이터의 특징이 변화되는 경우에 기존의 배치 학습 기반 알고리즘의 성능 저하가 불가피하다. 본 논문에서는 정상 데이터의 점진적 특징 변화를 고려할 수 있는 온라인 비정상 탐지 알고리즘을 제안한다. 제안하는 알고리즘은 단일 클래스 분류 모델에 기반하며 오프라인 및 온라인 단계의 학습 과정을 포함한다. 제안된 알고리즘의 오프라인 학습 단계에서는 사전 데이터가 잠재 공간의 중심에 근접하도록 학습하고, 이후 온라인 학습단계에서는 신규 데이터에 의한 점진적 잠재 공간의 중심을 갱신하고, 갱신된 중심을 기준으로 계속 학습을 진행한다. 공개된 수중 음향 데이터를 이용한 실험결과 제안된 온라인 비정상 탐지 알고리즘은 점진적 중심 갱신 및 학습을 위해 단지 2 % 정도의 추가 학습시간이 소요되는 것으로 확인되었다. 반면에 시변 정상데이터가 수신되는 경우에 오프라인 학습 모델과 비교하여 19.10 % 개선된 Area Under the receiver operating characteristic Curve(AUC) 성능을 보였다.