DOI QR코드

DOI QR Code

Impact localization on a composite plate using multiplexed FBG sensors and error-outlier algorithm

다중화된 FBG 센서와 error-outlier 알고리즘을 이용한 복합재 평판에 대한 충격위치탐지

  • Park, Sung Yong (Department of Mechanical Engineering, Hankyong National University) ;
  • Kim, Sang-Woo (Department of Mechanical Engineering, Hankyong National University) ;
  • Park, Sangyoon (Polymer Research Lab, Research & Development Division, Hyundai Motor)
  • 박성용 (국립한경대학교 기계공학과) ;
  • 김상우 (국립한경대학교 기계공학과) ;
  • 박상윤 (현대자동차 연구개발본부 고분자재료리서치랩)
  • Received : 2018.09.03
  • Accepted : 2018.10.29
  • Published : 2018.12.31

Abstract

An impact localization for a carbon fiber reinforced plastic (CFRP) composite plate was performed using the multiplexed fiber bragg grating (FBG) sensors and the error-outlier based impact localization algorithm. We found that the optimal impact localization with the maximum error of 31.82 mm and the averaged error of 6.31 mm are obtained when the error threshold (ET) and constant level (CL) are 0.3 nm and 110, respectively. Moreover, the detailed process of impact localization under certain optimal parameters and the relevant results were thoroughly investigated. We conclude that the multiplexed FBG sensors and the error-outlier based impact localization algorithm are suitable for an impact localization on composite structures, and expect that they can be utilized for various structural health monitoring (SHM) in the future.

본 연구에서는 error-outlier 기반의 충격위치탐지 알고리즘과 다중화된 FBG 센서를 이용하여 탄소섬유 강화 플라스틱 복합재 평판 구조물에 대한 충격위치탐지를 수행하였다. 알고리즘의 주요 변수인 오차 임계값(ET)이 0.3 nm, 상수 수준(CL)이 110일 때 최적의 충격위치탐지 결과(최대 오차= 31.82 mm, 평균 오차= 6.31 mm)가 도출되었다. 또한 주어진 최적의 변수 조건에서의 충격위치탐지 과정과 결과를 상세히 분석하였다. 본 연구에서 제시된 다중화된 FBG 센서와 error-outlier 기반의 충격탐지 알고리즘은 복합재 구조물에 대한 충격탐지에 적합한 것으로 판단되며, 향후 다양한 구조 건전성 감시에 활용될 것으로 기대된다.

Keywords

OJSSBW_2018_v12n6_32_f0001.png 이미지

Fig. 1 Flowchart of error-outlier based impact localization algorithm [7-9]

OJSSBW_2018_v12n6_32_f0002.png 이미지

Fig. 2 Location of arbitrary impact points and installed FBG sensors

OJSSBW_2018_v12n6_32_f0003.png 이미지

Fig. 3 Averaged errors with respect to ET and CL

OJSSBW_2018_v12n6_32_f0004.png 이미지

Fig. 4 Outliers and the estimated impact points for IP2 (ET= 0 nm, CL= 10)

OJSSBW_2018_v12n6_32_f0005.png 이미지

Fig. 5 Results of impact localization estimated from multiplexed FBG sensors (ET=0.3nm, CL=110)

OJSSBW_2018_v12n6_32_f0006.png 이미지

Fig. 6 Outliers and the selected reference points for IP6 (ET=0.3, CL=110)

OJSSBW_2018_v12n6_32_f0007.png 이미지

Fig. 7 Outliers and the estimated impact points for IP2 (ET= 0.3 nm, CL= 110)

OJSSBW_2018_v12n6_32_f0009.png 이미지

Fig. 8 Outliers and the estimated impact points for IP3 (ET= 0.3 nm, CL= 110)

OJSSBW_2018_v12n6_32_f0010.png 이미지

Fig. 9 Outliers and the estimated impact points for IP4 (ET= 0.3 nm, CL= 110)

Table 1 Arbitrary impact points for impact localization

OJSSBW_2018_v12n6_32_t0001.png 이미지

Table 2 Errors of impact localization estimated from multiplexed FBG sensors (ET=0.3 nm, CL=110)

OJSSBW_2018_v12n6_32_t0002.png 이미지

Table 3 Selection and deletion of reference numbers in an error-outlier algorithm (ET=0.3 nm, CL=110)

OJSSBW_2018_v12n6_32_t0003.png 이미지

References

  1. A. Baker, S. Dutton and D. Kelly, "Composite materials for aircraft structures," AIAA Education Series, 2004.
  2. E. Fuchs, F. Field, R. Roth and R. Kirchain, "Strategic materials selection in the automobile body: Economic opportunities for polymer composite design," Composites Science and Technology, vol. 68, no. 9, pp. 1989-2002, 2008. https://doi.org/10.1016/j.compscitech.2008.01.015
  3. C. Bakis, L. Bank, V. Brown, E. Cosenza, J. Davalos, J. Lesko, A. Machida, S. Rizkalla and T. Triantafillou, "Fiber-reinforced polymer composites for construction: state of the art review," Journal of Composites for Construction, vol. 6, no.2, 2002.
  4. A. Mouritz, E. Gellert, P. Burchill and K. Challis, "Review of advanced composite structures for naval ships and submarines," Composite Structures, vol. 53, no.1, pp. 21-42, 2001. https://doi.org/10.1016/S0263-8223(00)00175-6
  5. S. Kim, M. Cha, I. Lee, E. Kim, I. Kwon and T. Hwang, "Damage evaluation and strain monitoring of composite plates using metal-coated FBG sensors under quasi-static indentation," Composites Part B: Engineering, vol. 66, pp. 36-45, 2014. https://doi.org/10.1016/j.compositesb.2014.03.012
  6. H. Kang, H. Bang, C. Hong and C. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fiber optic sensor," Measurement Science and Technology, vol. 13, no. 8, pp. 1191-1196, 2002. https://doi.org/10.1088/0957-0233/13/8/305
  7. P. Shretha, J. Kim, Y. Park and C. Kim, "Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers," Composite Structures, vol. 142, pp. 263-271, 2015.
  8. P. Shretha, Y. Park and C. Kim, "Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors," Composites Part B: Engineering, vol. 116, pp. 1-15, 2017. https://doi.org/10.1016/j.compositesb.2016.12.060
  9. S. Kim and H. Jang, "Impact localization on a composite plate based on error outlier with Pugh's concept selection," Composite Structures, vol. 200, pp. 449-465, 2018. https://doi.org/10.1016/j.compstruct.2018.05.141
  10. S. Lu, M. Jiang, Q. Sui, Y. Sai and L. Jia, "Low velocity impact localization system of CFRP using fiber Bragg grating sensors," Optical Fiber Technology, vol. 21, pp. 13-19, 2015. https://doi.org/10.1016/j.yofte.2014.07.003
  11. Y. Lee and C. Kim, "Impact source identification for pipe structure based on a one-dimensional fiber Bragg grating sensor array," Journal of Intelligent Material Systems and Structures, vol. 28, no. 12, pp. 1662-1669, 2017. https://doi.org/10.1177/1045389X16679292