• Title/Summary/Keyword: 탐지 및 분류

Search Result 590, Processing Time 0.029 seconds

Detection and Classification for Low-altitude Micro Drone with MFCC and CNN (MFCC와 CNN을 이용한 저고도 초소형 무인기 탐지 및 분류에 대한 연구)

  • Shin, Kyeongsik;Yoo, Sinwoo;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.364-370
    • /
    • 2020
  • This paper is related to detection and classification for micro-sized aircraft that flies at low-altitude. The deep-learning based method using sounds coming from the micro-sized aircraft is proposed to detect and identify them efficiently. We use MFCC as sound features and CNN as a detector and classifier. We've proved that each micro-drones have their own distinguishable MFCC feature and confirmed that we can apply CNN as a detector and classifier even though drone sound has time-related sequence. Typically many papers deal with RNN for time-related features, but we prove that if the number of frame in the MFCC features are enough to contain the time-related information, we can classify those features with CNN. With this approach, we've achieved high detection and classification ratio with low-computation power at the same time using the data set which consists of four different drone sounds. So, this paper presents the simple and effecive method of detection and classification method for micro-sized aircraft.

Semantic Analysis on Traffic Flooding Attacks Detection System (트래픽 폭주 공격 탐지 시스템의 의미론적 해석)

  • Jaehak Yu;Seunggeun Oh;Hansung Lee;Jun-Sang Park;Myung-Sup Kim;Daihee Park
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.1496-1499
    • /
    • 2008
  • DoS/DDoS로 대표되는 트래픽 폭주 공격은 대상 시스템뿐만 아니라 네트워크 대역폭 및 시스템 자원 등을 고갈시킴으로써 네트워크에 심각한 장애를 유발하기 때문에, 신속한 공격 탐지와 공격유형별 분류는 안정적인 서비스 제공 및 시스템 운영에 필수요건이다. 본 논문에서는 1) 데이터마이닝의 대표적인 분류 모델인 C4.5 알고리즘을 기반으로 SNMP MIB 정보를 사용하여 트래픽 폭주공격을 탐지하고 각 공격유형별 분류를 수행하는 시스템을 설계 및 구현하였다; 2) C4.5에서 추가적으로 제공하는 동작원리에 관한 규칙들을 상세히 분석함으로써 공격탐지 및 공격유형별 분류에 관한 시스템의 의미론적 해석을 시도하였다; 3) C4.5는 주어진 SNMP MIB의 속성들의 정보이익 값을 이용하여 예측모형을 구축하는 알고리즘으로, 특징선택 및 축소의 효과를 추가적으로 얻었다. 따라서 시스템의 운용 시, 제안된 모델은 전체 13개의 MIB 정보 중 5개의 MIB 정보만을 사용하여 보다 신속하고, 정확하며, 또한 가벼운 공격탐지 및 공격유형별 분류를 수행함으로써 네트워크 시스템의 자원관리와 효율적인 시스템 운영에 기여하였다.

Claim Detection and Stance Classification through Pattern Extraction Learning in Korean (패턴 추출 학습을 통한 한국어 주장 탐지 및 입장 분류)

  • Woojin Lee;Seokwon Jeong;Tae-il Kim;Sung-won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.234-238
    • /
    • 2023
  • 미세 조정은 대부분의 연구에서 사전학습 모델을 위한 표준 기법으로 활용되고 있으나, 최근 초거대 모델의 등장과 환경 오염 등의 문제로 인해 더 효율적인 사전학습 모델 활용 방법이 요구되고 있다. 패턴 추출 학습은 사전학습 모델을 효율적으로 활용하기 위해 제안된 방법으로, 본 논문에서는 한국어 주장 탐지 및 입장 분류를 위해 패턴 추출 학습을 활용하는 모델을 구현하였다. 우리는 기존 미세 조정 방식 모델과의 비교 실험을 통해 본 논문에서 구현한 한국어 주장 탐지 및 입장 분류 모델이 사전학습 단계에서 학습한 모델의 내부 지식을 효과적으로 활용할 수 있음을 보였다.

  • PDF

Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment (IOT 환경에서의 오토인코더 기반 특징 추출을 이용한 네트워크 침입탐지 시스템)

  • Lee, Joohwa;Park, Keehyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.483-490
    • /
    • 2019
  • In the Network Intrusion Detection System (NIDS), the function of classification is very important, and detection performance depends on various features. Recently, a lot of research has been carried out on deep learning, but network intrusion detection system experience slowing down problems due to the large volume of traffic and a high dimensional features. Therefore, we do not use deep learning as a classification, but as a preprocessing process for feature extraction and propose a research method from which classifications can be made based on extracted features. A stacked AutoEncoder, which is a representative unsupervised learning of deep learning, is used to extract features and classifications using the Random Forest classification algorithm. Using the data collected in the IOT environment, the performance was more than 99% when normal and attack traffic are classified into multiclass, and the performance and detection rate were superior even when compared with other models such as AE-RF and Single-RF.

Proposal and empirical study of web shell detection system (MWSDS) applying machine learning-based supervised learning and classification (머신러닝기반의 지도학습과 분류 알고리즘을 적용한 웹쉘 탐지시스템(MWSDS)제안 연구)

  • Ki-hwan Kim;Sangdo Lee;Yongtae Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.49-50
    • /
    • 2024
  • 본 논문에서는 웹쉘 악성코드를 정확하게 분류하고, 빠른시간안에 자동으로 웹쉘 분류 및 분석을 통하여 웹쉘을 탐지하기 위하여 인공지능 머신러닝 기반의 Supervised AI ML 및 Classification 알고리즘을 적용하여 빠른 시간안에 분류, 정확한 분석을 통하여 자동화된 탐지시스템인 MWSDS를 제안하고 웹쉘 실험 데이터를 통하여 실증하였다. 본제안의 경우 웹쉘악성코드 공격에 대한 대응뿐만아니라 관리적인 정보보호 체계수립을 통하여 보다 효과적이며, 지속적으로 대응할 수 있을 것으로 전망된다.

  • PDF

Darknet Traffic Detection and Classification Using Gradient Boosting Techniques (Gradient Boosting 기법을 활용한 다크넷 트래픽 탐지 및 분류)

  • Kim, Jihye;Lee, Soo Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.371-379
    • /
    • 2022
  • Darknet is based on the characteristics of anonymity and security, and this leads darknet to be continuously abused for various crimes and illegal activities. Therefore, it is very important to detect and classify darknet traffic to prevent the misuse and abuse of darknet. This work proposes a novel approach, which uses the Gradient Boosting techniques for darknet traffic detection and classification. XGBoost and LightGBM algorithm achieve detection accuracy of 99.99%, and classification accuracy of over 99%, which could get more than 3% higher detection accuracy and over 13% higher classification accuracy, compared to the previous research. In particular, LightGBM algorithm could detect and classify darknet traffic in a way that is superior to XGBoost by reducing the learning time by about 1.6 times and hyperparameter tuning time by more than 10 times.

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

A Network Intrusion Detection System Model for Detecting of Insertion and Evasion Attacks (삽입 및 배제 공격을 고려한 네트워크 침입 탐지 시스템 모델)

  • 차현철
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.69-75
    • /
    • 2000
  • This paper proposes a network intrusion detection model which can detect the insertion and evasion attacks. These attacks can be prevented when some kind of information are available in the network intrusion detection system. We classified these information with three categories and used each category at setup phase and executing Phase. Within the proposed model, all necessary information which are related with networks and operating systems are maintained in the database and created as a table. This table is used during intrusion detection. The overheads of database and table may be simple in this model.

  • PDF

Convolution Neural Network for Malware Detection (합성곱 신경망(Convolution Neural Network)를 이용한 악성코드 탐지 방안 연구)

  • Choi, Sin-Hyung
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.166-168
    • /
    • 2018
  • 새롭게 변형되는 대규모 악성코드들을 신속하게 탐지하기 위하여 인공지능 딥러닝을 이용한 악성코드 탐지 기법을 제안한다. 대용량의 고차원 악성코드를 저차원의 이미지로 변환하고, 딥러닝 합성곱신경망(Convolution Neural Network)을 통해 이미지의 악성코드 패턴을 학습하고 분류하였다. 본 논문에서는 악성코드 분류 모델의 성능을 검증하기 위하여 악성코드 종류별 분류 실험과 악성코드와 정상코드 분류 실험을 실시하였고 각각 97.6%, 87%의 정확도로 악성코드를 구별해 내었다. 본 논문에서 제안한 악성코드 탐지 모델은 차원 축소를 통해 10,868개(200GB)의 대규모 데이터에 대하여 10분 이내의 학습시간이 소요되어 새로운 악성코드 학습 및 대용량 악성코드 탐지를 신속하게 처리 가능함을 보였다.

이진 변화탐지 컴포넌트의 개발 및 변화영상의 비교 연구

  • Yu, Byeong-Hyeok;Ji, Gwang-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.231-236
    • /
    • 2008
  • 본 연구에서는 이진 변화탐지 방법상 요구되는 수동적인 자료처리 단계들을 모듈화하고 통합한 '이진 변화탐지 컴포넌트'를 개발하였으며, 대전 지역의 IKONOS 다중시계열 위성영상의 2개 연구지역에 적용함으로써 그 성능을 검증하였다. 개발된 컴포넌트는 ESRI의 ArcGIS 9.x 상에서 설치 및 실행되며, Visual Basic과 GIS 객체 라이브러리의 결합을 통해 구현되었다. 적용된 모델은 Im. J.(2007)의 연구에서 제시된 '캘리브레이션 기법을 이용한 자동 이진 변화탐지 모델'을 확장 적용한 것으로, 변화영상 히스토그램의 비정규분포를 고려한 누적 생산자 및 사용자 정확도 평가 기법이 최적 임계치 결정에 사용되었다. 다양한 변화탐지 기술들, ID, IR, NCIs, CVA, PCA와 ID, IR의 결합이 실험을 통해 비교 분석되었다. 실험 결과, 개선된 캘리브레이션 기법 적용을 통해 기존 기법보다 향상된 분류정확도를 얻었으며, PC1의 ID가 연구지역의 변화탐지 상에서 가장 우수한 분류 능을 보여주었다.

  • PDF