• 제목/요약/키워드: 탐지확률

검색결과 264건 처리시간 0.022초

점증적으로 증가하는 타원형 군집화 : 피부색 영역 검출에의 적용 (Elliptical Clustering with Incremental Growth and its Application to Skin Color Region Segmentation)

  • 이경미
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1161-1170
    • /
    • 2004
  • 본 논문에서는 군집화 알고리즘을 사용하여 피부색 영역을 분할하는 방법을 제안한다. 기존의 군집화 알고리즘들의 대부분은 주로 구형의 군집을 검출하고, 배치형으로 수행되며, 군집의 개수를 미리정해야 한다는 문제점을 가지고 있다. 본 논문에서는 대표적인 타원형 군집화 알고리즘인 EM 알고리즘을 변형하여, 온라인으로 학습가능하며, 군집의 개수를 자동적으로 찾아낼 수 있는 EAM 알고리즘을 사용하였다. EAM 알고리즘외 유효성은 피부색 영역 분할에 대해 증명되었다. 실험결과는 군집의 개수가 미리 주어지지 않더라도, EAM 알고리즘은 주어진 영상에 대해 자동적으로 옳은 군집의 개수를 찾아냈고, EM 알고리즘과 비교하여 더 좋은 분할 결과를 보여주고 있다. 영역에 대한 조건부 확률을 이용하여 성공적인 피부색 영역의 탐지 및 분할 결과를 얻었다. 또한 사람이 포함된 영상을 분류하는 문제에도 적용하여 좋은 분류 결과를 얻었다.

앙상블 구성을 이용한 SVM 분류성능의 향상 (Improving SVM Classification by Constructing Ensemble)

  • 제홍모;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.251-258
    • /
    • 2003
  • Support Vector Machine(SVM)은 이론상으로 좋은 일반화 성능을 보이지만, 실제적으로 구현된 SVM은 이론적인 성능에 미치지 못한다. 주 된 이유는 시간, 공간상의 높은 복잡도로 인해 근사화된 알고리듬으로 구현하기 때문이다. 본 논문은 SVM의 분류성능을 향상시키기 위해 Bagging(Bootstrap aggregating)과 Boosting을 이용한 SVM 앙상블 구조의 구성을 제안한다. SVM 앙상블의 학습에서 Bagging은 각각의 SVM의 학습데이타는 전체 데이타 집합에서 임의적으로 일부 추출되며, Boosting은 SVM 분류기의 에러와 연관된 확률분포에 따라 학습데이타를 추출한다. 학습단계를 마치면 다수결 (Majority voting), 최소자승추정법(LSE:Least Square estimation), 2단계 계층적 SVM등의 기법에 개개의 SVM들의 출력 값들이 통합되어진다. IRIS 분류, 필기체 숫자인식, 얼굴/비얼굴 분류와 같은 여러 실험들의 결과들은 제안된 SVM 앙상블의 분류성능이 단일 SVM보다 뛰어남을 보여준다.

비강압적 방법에 의한 원거리에서의 홍채 탐지 기법 (Iris Detection at a Distance by Non-volunteer Method)

  • 박권도;김동수;김정민;송영주;고석주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.705-708
    • /
    • 2018
  • 현재 보안을 위해 상용화된 생체 인식 중 홍채 인식 기술은 개인마다 일치할 확률이 매우 적다. 그러나 현재 상용화된 홍채 인식 기술은 인식력은 뛰어나나 인식하기 위해 사용자의 능동적 협조가 필요하다는 단점을 가지고 있다. 이에 따라 최근 추세는 이러한 불편을 해결하기 위해 비강압적인 방식을 통해 사용자들의 홍채를 검출하는 방향으로 흐르고 있으며, 본 과제의 목적은 고성능 적외선 카메라를 사용하여 3m 거리 이내에서 비자발적 방식으로 확보한 영상에서홍채를 통해 사람을 식별하는 모듈을 개발하는 것이다. 고성능 적외선 카메라를 사용해 확보한 영상에서 이미지를 가져오고, 이 이미지를 식별하여 사람의 얼굴 및 눈의 위치를 가져온 뒤, 식별된 사람의 얼굴 및 눈의 위치를 허프 변환을 통해 홍채의 이미지를 잘라내어 데이터베이스에 저장된 홍채 패턴과 대조하여 사람을 식별하고자 한다.

  • PDF

IEEE 802.15.4 기반 저전력 컨테이너 보안장치의 설계 및 구현 (Design and Implementation of Low Power Container Security Device based on IEEE 802.15.4)

  • 박세영;김택현;최훈;백윤주
    • 한국통신학회논문지
    • /
    • 제35권2B호
    • /
    • pp.215-224
    • /
    • 2010
  • 컨테이너 보안장치(CSD)는 컨테이너의 도어를 통한 침입을 감시하는 장치이며, IEEE 802.15.4의 비컨 모드에서 RFD로 동작한다. 그러나 비컨 모드에서는 CSD 리더가 없어도 주기적으로 리더의 신호를 탐지하게 되므로 배터리 소모가 크다. CSD는 목적지에 도착할 때까지 이상없이 동작해야 하므로 배터리 소모를 줄이고, 위험 발생 시 CSD 리더에게 능동적으로 메시지를 전달해야 한다. 본 논문에서는 미국 DHS의 CSD 규격에 부합하는 저전력 CSD를 제안한다. 제안하는 CSD는 전력 소모를 최소화한 하드웨어 디자인과 저전력 동작기법인 불침번 기법, 저전력 센싱 기능을 통해 배터리 소모를 줄인다. 또한 위험 상황 발생 시 리더에게 능동적으로 경고 메시지를 전달한다. 성능 평가 결과 제안한 CSD는 불침번 기법을 통해 배터리 소모를 70% 이상 줄이고, 저전력 센싱 기능을 통해 불필요한 센싱을 80% 이상 감소시키며, 직접적인 통신 거리 밖에 있는 리더에게 94%가 넘는 확률로 메시지를 전달할 수 있음을 보였다.

UAV 체계운용효과도를 고려한 임무분석 연구 (A Study on Mission Analysis in Consideration of Effectiveness Measurement of UAV System Operations)

  • 최관선;정하교;박태유;전제환
    • 한국국방경영분석학회지
    • /
    • 제37권1호
    • /
    • pp.119-128
    • /
    • 2011
  • 이 연구는 무인항공기 체계운용 효과도를 고려한 임무분석연구를 다룬다. 이 임무분석절차는 (1) 기본 MANA 모델 시나리오 생성, (2) 실험계획에 의한 입력변수조합 설계, (3) 기본 MANA 모델 시나리오와 설계된 입력변수조합과의 연결, (4) Data Farming 및 일괄처리에 의한 모델 수행, (5) 모델 수행결과의 통계분석 등 5단계로 이루어진다. 임무분석결과로 독립변수의 종속변수(운용 효과도)에 영향을 마치는 정도는 식별거리, 탐지 폭, 비행고도, 비행속도, 센서 개구각, 식별확률 순으로 작아지고, 기준 시나리오를 개선된 시나리오로 변경하여 운용할 경우 운용효과가 10.2% 증가할 수 있음을 제시한다.

EEG 신호의 Power Spectrum을 이용한 사람의 감정인식 방법 : Bayesian Networks와 상대 Power values 응용 (Human Emotion Recognition using Power Spectrum of EEG Signals : Application of Bayesian Networks and Relative Power Values)

  • 염홍기;한철훈;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.251-256
    • /
    • 2008
  • 많은 연구자들은 여러 개의 채널을 가진 Electroencephalogram(EEG) 신호를 기반으로 한 사람의 감정인식을 위해 두뇌와 컴퓨터의 인터페이스에 관한 연구를 하고 있다. EEG 신호를 이용한 연구들은 주로 의학 분야와 심리학의 영역에서 간질이나 발작 등을 알아내고 거짓말 탐지기로써의 역할로 많이 사용되어져 왔다. 최근에는 사람의 두뇌와 컴퓨터 간의 인터페이스에 관한 연구들이 뇌파를 이용한 로봇의 제어하거나 게임을 하는 등의 여러 가지 공학적인 접근으로써 많은 연구가 진행되고 있다. 특히, EEG 신호를 통해서 두뇌를 연구하는 분야에서 EEG 신호의 잡음을 제거해서 보다 정확한 신호를 추출하는 연구에도 많이 중점을 두고 있다. 본 논문에서는 사람의 감정에 따른 EEG 신호를 측정하고 측정된 EEG 신호를 5개 부분의 주파수 영역으로 분류하였다. 영역별로 분류된 EEG 신호들은 전체영역에 대한 상대적인 비율의 값으로 계산하게 된다. 그 값들은 Bayesian Networks를 통해서 현재 어떠한 감정을 나타내는지 확률 값으로 나타낸다. 그 결과 값에 따라 사람의 감정은 아바타로 표현하게 된다.

서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출 (Real-Time Landmark Detection using Fast Fourier Transform in Surveillance)

  • 강성관;박양재;정경용;임기욱;이정현
    • 디지털융복합연구
    • /
    • 제10권7호
    • /
    • pp.123-128
    • /
    • 2012
  • 본 논문에서는 보다 정확한 물체 인식을 위하여 물체의 특징점 검출 시스템을 제안한다. 물체의 특징점 검출 시스템은 학습 단계와 검출 단계로 구분된다. 학습 단계에서는 각 특징점의 탐색영역을 설정하기 위한 관심영역모델과 탐색영역에서 특징점을 검출하기 위한 각 특징점별 검출기를 생성한다. 검출 단계에서는 학습 단계에서 생성했던 관심영역모델을 이용하여 입력 영상에서 각각의 특징점의 탐색영역을 설정한다. 시스템에서 검출하고자 하는 특징점 검출 방법은 고속 푸리에 변환을 이용하기 때문에 검출 속도가 빠르며 물체의 추적 시 실패하는 확률이 낮아진다. 제안하는 방법을 개발하여 실험 영상에 적용한 결과 추적하고자 하는 물체가 불규칙적인 속도로 움직일 때에도 안정적으로 추적함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.

복잡한 배경에서 신경망을 이용한 얼굴인식 (Face Recognition on complex backgrounds using Neural Network)

  • 한준희;남기환;박호식;이영식;정연길;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1149-1152
    • /
    • 2005
  • 복잡한 배경을 지닌 이미지에서 얼굴을 검출하기란 매우 어려운 일이다. 본 논문에서는 신경망 모델을 기반으로 한 제한생성모델(CGM: Constrained Generative Model)을 제안한다. 학습 과정의 목표라 할 수 있는 생성은 신경망 모델이 입력 데이터를 발생시킬 확률을 계산하도록 하는 것이고, 계산하는데 걸리는 시간을 줄이기 위해서 고속 탐지 알고리즘을 제안한다. 얼굴 측면 검출과 오 인식의 수를 줄이기 위해서 조건을 혼합한 신경망을 사용하였고 반증으로 인한 제한을 둠으로써 모델의 측정 품질을 증가시켰다. 본 논문에서 제안한 검출 알고리즘이 0$_{\circ}$ ${\sim}$60$_{\circ}$ 사이에서는 90%정도의 검출율을 나타냄을 알 수 있었다.

  • PDF

수중 표적 탐색전술 분석용 시뮬레이션 시스템 설계 및 개발 (Simulation System Design and Development for Analysis of the Search Strategy for Underwater Targets)

  • 박영만;신성철
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2753-2758
    • /
    • 2009
  • 해군에서는 수중 표적을 효과적으로 탐색하기 위한 소나운용전술을 개발하기 위해 노력하고 있다. 효율적인 소나운용전술 개발을 위해서는 먼저 다양한 소나운영전술에 대한 효과도를 분석할 수 있는 시뮬레이션 시스템이 필요하다. 시뮬레이션 시스템은 해양환경 정보, 자함 정보, 소나 정보, 그리고 수중표적의 정보를 매개변수로 입력받아 소나운용전술에 대한 시뮬레이션을 수행하며, 시뮬레이션의 진행에 따른 다양한 정보를 제공할 수 있어야 한다. 본 연구에서는 다양한 환경에서 수중표적에 대한 함정의 최적 탐색 전략을 평가할 수 있는 탐색효과도 분석용 시뮬레이션 시스템을 설계 개발하였다. 시뮬레이션 시스템은 소나방정식 및 탐지확률곡선을 이용할 수 있도록 개발되었으며, 표적의 실제적인 행동패턴을 고려하여 여러 가지 형태의 기동 패턴을 시스템에 묘사하였다. 개발된 시스템은 앞으로 수중표적에 대한 효율적인 소나운용전술을 개발하고 발전시키는데 유용하게 사용될 수 있을 것으로 판단된다.

관심영역 추출과 통합에 의한 적외선 영상 분할 (Infrared Image Segmentation by Extracting and Merging Region of Interest)

  • 염석원
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.493-497
    • /
    • 2016
  • 적외선 영상은 야간에 표적의 탐지가 가능하여 보완과 감시분야에 활용도가 높다. 그러나 가시광선 영상에 비하여 해상도가 낮고 잡음의 영향이 크다는 단점이 있다. 본 논문에서는 적외선 영상의 표적을 분할하는 방법을 연구한다. 표적을 포함하는 다수의 관심영역(Region of Interest)을 다단계 분할 방법을 이용하여 추출하고 관심영역을 입력영상으로 다단계 분할방법을 다시 적용하여 표적을 분할한다. 다단계 분할 방법의 각 단계는 가우시안 혼합모델의 파라미터를 초기화 하고 추정하는 k-means 클러스터링(Clustering)과 EM(Expectation-Maximization) 알고리즘과 추정된 사후확률을 이용하여 각 화소의 클러스터를 결정하는 단계로 구성된다. 본 논문에서 추출된 관심영역을 선택하고 통합하는 방법을 제안한다. 관심영역의 통합은 근접한 모든 관심영역의 윈도우를 포함하도록 이루어진다. 실험에서는 야간의 보행자로부터 획득한 적외선 영상에 제안된 방법을 적용하고 다른 분할 방법과 비교하여 제안한 방법이 우수함을 보인다.