• Title/Summary/Keyword: 탐지물질

Search Result 147, Processing Time 0.025 seconds

An Experimental Study on Detecting materials of GPR for Maintenance of Restored Cavities (복구된 공동의 유지관리를 위한 GPR 탐사용 탐지물질에 관한 실험적 연구)

  • Park, Jeong Jun;Shin, Eun Chul;Park, Kwang Seok;Shin, Hee Soo;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.430-439
    • /
    • 2018
  • Purpose: The purpose of this study is to verify the effectiveness of maintenance method using GPR exploration by buried detective materials in the ground for efficient maintenance of recovered cavities. Method: EMI sheet, EMI paint, and ferronickel slag were used as the detection materials, and the experiment was conducted by varying the size and depth of the buried detectable material. Results: As a result of the exploration, Detectable influence range by GPR exploration was found depending on the size and depth of buried detectable material in all materials, and the possibility of using it as a detection material was confirmed.

On the study of Chemical Disaster Cause Chemical Detection Process (화학재난 현장에서의 사건원인 화학물질 탐지절차 연구)

  • Kim, Sungbum;Ahn, Seungyoung;Lee, Jinhwan
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.452-457
    • /
    • 2014
  • The event of a Chemical disaster response personnel are causative events quickly Appearance & residual contaminant concentrations, should be identified accurately. In addition, the chemical disaster response procedure appropriate progress in the field of Chemical Composition and contaminant concentrations in order confirmation is essential. Use in the field to using the characteristics of each equipment. on-Site response equipment can not verify all the chemicals, materials detection, limited by each equipment. Detection range of equipment & specific materials should be considered complementary. In this study, using the equipment on-site detection of detection kit and detector tube, electronic detection equipment utilized for the rapid response procedure for helping a person to cope.

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

A Study on Drone Flight Trajectory for Accurate Detection of Air Pollutant Emission Designation (정확한 대기오염물질 배출 지정 탐지를 위한 드론 비행 궤도에 관한 연구)

  • Kim, Suyeong;Lee, Sukhoon;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.15-17
    • /
    • 2021
  • This paper proposes a drone flight trajectory method for accurate air pollutant emission designation detection. In areas with many factories, such as industrial complexes, there are workplaces that illegally emit air pollutants in a situation where monitoring is neglected. In the past, studies have been actively conducted to measure air pollutants in these areas using drones. The measurement method using a drone uses a method of detecting pollution by stopping around the chimney of a factory, but it has a problem in that the detection of air pollutants is inaccurate depending on environmental factors such as air pressure and wind. Therefore, this paper proposes a drone flight trajectory method for accurate air pollutant emission designation detection. This paper devises a screw orbit flight method in which a drone flies upward while rotating the chimney, and the total area of the chimney is detected and measured considering environmental factors. In the experiment, our proposal shows a higher performance than the existing method.

  • PDF

LNAPL Detection with GPR (GPR 탐사방법을 이용한 유류오염물질(LNAPL) 탐지)

  • Kim, Chang-Ryol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.94-103
    • /
    • 2001
  • An experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of vadose zone gasoline vapor phase effects and residual gasoline distributed by a fluctuating water table. After background GPR measurements were made with only water in the tank, gasoline was injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank. Results from the experiment show the sensitivity of GPR to the changes in the moisture content and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for detecting possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate LNAPL contamination at field sites where zones of residual LNAPL in the water saturated system are present in the subsurface.

  • PDF

The chemical reactivity of detecting tube detection equipment for incident responder (화학사고 초기대응자를 위한 검지관식 탐지장비의 반응성 연구)

  • Ahn, Seung-Young;Kim, Jungmin;Kim, Sungbum;Chun, Kwangsoo;Lee, Jin-Seon;Park, Choonhwa
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Chemical accidents are the cause of the accident site during the initial responders to quickly and easily see materials and concentration method for the U.S. Environmental Protection Agency(EPA) is widely used in the initial response team direct reading detection equipment used. Ministry of the tubular gas detection equipment to detect direct reading detection equipment used in the event of an accident scene, and shell-and-tube gas detector for rapid detection and identification and precise analysis of causative pollutants before about strategically can identify the quantitative and qualitative useful equipment. However, those who initially respond to the scene of a direct reading detection equipment and a simple lack of understanding of how to use the numbers only because of the way you want to check the accuracy of detection results have been raising questions about the increase. The scene of the accident in order to obtain an accurate detection results used in this paper, the Ministry of Environment of gas detectors detect tubular Kitagawa and Draeger detector tube to check the reactivity of the material on-site detection of early response of those who were to raise the accuracy of the results.

Analysis and Recognition of Behavior of Medaka in Response to Toxic Chemical Inputs by using Multi-Layer Perceptron (다층 퍼셉트론을 이용한 유해물질 유입에 따른 송사리의 행동 반응 분석 및 인식)

  • 김철기;김광백;차의영
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1062-1070
    • /
    • 2003
  • In this paper, we observe one of the aquatic insect, fish(Medaka)'s behavior which reacts to giving toxic chemicals until lethal conditions using automatic tracking sl$.$stem. For the result, we define the Pattern A is a normal movement of fish and Pattern B is after giving the chemicals. In order to detect the movement of fish automatically, these patterns are selected for the training data of the artificial neural networks. The average recognition rates of the pattern B are remarkably increased after inputs of toxic chemical(diazinon) while the Pattern A is decreased distinctively. This study demonstrates that artificial neural networks are useful method for detecting presence of toxicoid in environment as for an alternative of in-situ behavioral monitoring tool.

  • PDF

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.