• Title/Summary/Keyword: 탐색 영역 추출

Search Result 266, Processing Time 0.029 seconds

Presentation Control System using Vision Based Hand-Gesture Recognition (Vision 기반 손동작 인식을 활용한 프레젠테이션 제어 시스템)

  • Lim, Kyoung-Jin;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.281-284
    • /
    • 2010
  • In this paper, we present Hand-gesture recognition for actual computing into color images from camera. Color images are binarization and labeling by using the YCbCr Color model. Respectively label area seeks the center point of the hand from to search Maximum Inscribed Circle which applies Voronoi-Diagram. This time, searched maximum circle and will analyze the elliptic ingredient which is contiguous so a hand territory will be able to extract. we present the presentation contral system using elliptic element and Maximum Inscribed Circle. This algorithm is to recognize the various environmental problems in the hand gesture recognition in the background objects with similar colors has the advantage that can be effectively eliminated.

  • PDF

A Study on Eyelid and Eyelash Localization for Iris Recognition (홍채 인식에서의 눈꺼풀 및 눈썹 추출 연구)

  • Kang, Byung-Joon;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.898-905
    • /
    • 2005
  • Iris recognition Is that identifies a user based on the unique iris muscle patterns which has the functionalities of dilating or contracting pupil region. Because it is reported that iris recognition is more accurate than other biometries such as face, fingerprint, vein and speaker recognition, iris recognition is widely used in the high security application domain. However, if unnecessary information such as eyelid and eyelash is included in iris region, the error for iris recognition is increased, consequently. In detail, if iris region is used to generate iris code including eyelash and eyelid, the iris codes are also changed and the error rate is increased. To overcome such problem, we propose the method of detecting eyelid by using pyramid searching parabolic deformable template. In addition, we detect the eyelash by using the eyelash mask. Experimental results show that EER(Equal Error Rate) for iris recognition using the proposed algorithm is lessened as much as $0.3\%$ compared to that not using it.

  • PDF

Mobile Object Tracking Algorithm Using Particle Filter (Particle filter를 이용한 이동 물체 추적 알고리즘)

  • Kim, Se-Jin;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.586-591
    • /
    • 2009
  • In this paper, we propose the mobile object tracking algorithm based on the feature vector using particle filter. To do this, first, we detect the movement area of mobile object by using RGB color model and extract the feature vectors of the input image by using the KLT-algorithm. And then, we get the first feature vectors by matching extracted feature vectors to the detected movement area. Second, we detect new movement area of the mobile objects by using RGB and HSI color model, and get the new feature vectors by applying the new feature vectors to the snake algorithm. And then, we find the second feature vectors by applying the second feature vectors to new movement area. So, we design the mobile object tracking algorithm by applying the second feature vectors to particle filter. Finally, we validate the applicability of the proposed method through the experience in a complex environment.

A Vehicle Detection Algorithm for a Lane Change (차선 변경을 위한 차량 탐색 알고리즘)

  • Ji, Eui-Kyung;Han, Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose the method and system which determines the condition for safe and unsafe lane changing. To determine the condition, first, the system sets up the Region of Interest(ROI) on the neighboring lane. Second, a dangerous vehicle is extracted during the line changing. Third, the condition is determined to wm or not by calculating the moving direction, relative distance md relative velocity. To set up the ROI, the only one side lane is detected and the interested region is expanded. Using the coordinate transformation method, the accuracy of the ROI raised. To correctly extract the vehicle on the neighboring lane, the Adaptive Background Update method and Image Segmentation method which uses the feature of the travelling road are used. The object which is extracted by the dangerous vehicle is calculated the relative distance, the relative velocity and the moving average. And then in order to ring, the direction of the vehicle and the condition for safe and unsafe is determined. As minimizes the interested region and uses the feature of the travelling road, the computational quantity is reduced and the accuracy is raised and a stable result on a travelling road images which demands a high speed calculation is showed.

  • PDF

Occlusion Processing in Simulation using Improved Object Contour Extraction Algorithm by Neighboring edge Search and MER (이웃 에지 탐색에 의한 개선된 객체 윤곽선 추출 알고리즘과 MER을 이용한 모의훈련에서의 폐색처리)

  • Cha, Jeong-Hee;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.206-211
    • /
    • 2008
  • Trainee can enhance his perception of and interaction with the real world by displayed virtual objects in simulation using image processing technology. Therefore, it is essential for realistic simulation to determine the occlusion areas of the virtual object produces after registering real image and virtual object exactly. In this paper, we proposed the new method to solve occlusions which happens during virtual target moves according to the simulated route on real image using improved object contour extraction by neighboring edge search and picking algorithm. After we acquire the detailed contour of complex objects by proposed contour extraction algorithm, we extract the three dimensional information of the position happening occlusion by using MER for performance improvement. In the experiment, we compared proposed method with existed method and preyed the effectiveness in the environment which a partial occlusions happens.

A Study of Variables Related to Item Difficulty in College Scholastic Ability Test (대학수학능력시험 난이도 관련 변인 탐색)

  • 박문환
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.71-88
    • /
    • 2004
  • The purpose of this study was to examine particular variables that play a significant role in the difficulty of math test items in College Scholastic Ability Test (CSAT). The study also aimed to develop a model of measuring the item difficulty. Variables correlated to item difficulty were drawn from the review of the related literature and the analysis of the content and difficulty of the past test items of CSAT. The first instrument was designed by using the correlated variables. According to the results of correlation analysis, the second instrument was made by deleting the variables which showed relatively low correlation with item difficulty and by refining some variables. Several models were proposed by using the revised instrument. The comparison of the R square and cross validity of each model reveals that integrated regression model was the most stable and accurate among the proposed models. The study also showed that statistically significant predictors were choice format, content domain, behavior domain, and the degree of item familiarity in the order of proportion of variance accounted by the predictors. Despite the limited scope of the present research, it can be suggested that its findings provide useful insights into predicting math test item difficulty.

  • PDF

Location Generalization of Moving Objects for the Extraction of Significant Patterns (의미 패턴 추출을 위한 이동 객체의 위치 일반화)

  • Lee, Yon-Sik;Ko, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2011
  • In order to provide the optimal location based services such as the optimal moving path search or the scheduling pattern prediction, the extraction of significant moving pattern which is considered the temporal and spatial properties of the location-based historical data of the moving objects is essential. In this paper, for the extraction of significant moving pattern we propose the location generalization method which translates the location attributes of moving object into the spatial scope information based on $R^*$-tree for more efficient patterning the continuous changes of the location of moving objects and for indexing to the 2-dimensional spatial scope. The proposed method generates the moving sequences which is satisfied the constraints of the time interval between the spatial scopes using the generalized spatial data, and extracts the significant moving patterns using them. And it can be an efficient method for the temporal pattern mining or the analysis of moving transition of the moving objects to provide the optimal location based services.

Developing Operator and Algorithm for Road Automated Recognition (도로 자동인식을 위한 연산자 및 알고리즘 개발)

  • Lim, In-Seop;Choi, Seok-Keun;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, many studies extracting the geography information using digital aerial image have been implemented. But it is very difficult that automatically recognizing objects using edge detection method on the aerial image, and so that work have practiced manually or semi-automatically. Therefore, in this study, we have removed impedimental elements for recognition using the image which overlapped the significant information bands of brightness-sliced aerial images, then have developed the algorithm which can automatically recognize and extract road information and we will try to apply that method when we develope a system. For this, first of all, we have developed the 'template conformal-transformation moving operator' for automatically recognizing crosswalk area from crosswalk band image and the 'window normal search algorithm' which is able to track road area based on long-side length of crosswalk, so that we have proposed the method that can extract directly the road information from the aerial image.

  • PDF

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.