• Title/Summary/Keyword: 탐색기 주사루프

Search Result 7, Processing Time 0.022 seconds

Two-degree-of freedom $H_{\infty}$ control of a seeker scan loop using normalized coprime factorization (정규화 소인수분해를 이용한 탐색기 주사루프의 2자유도 $H_{\infty}$ 제어)

  • Lee, H.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.102-109
    • /
    • 1997
  • A two-degree-of freedom (TDF) $H_{\infty}$controller for a seeker scan loop is presented for the purpose of improving scanning performances. The perturbed plant model is characterized via the normalized coprime factorization. The TDF $H_{\infty}$controller is designed based on the loop shaping design procedure and model matching approach, and its performances are evaluated and compared with those of a previous work. It is demonstrated that the proposed TDF $H_{\infty}$controller is more effective to the control of the seeker scan loop than the previous controller.oller.

  • PDF

Robust controller design and performance analysis of seeker scan-loop (탐색기 주사루프의 강인 제어기 설계와 성능분석)

  • Lee, Ho-Pyeong;Hwang, Hong-Yeon;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.110-119
    • /
    • 1994
  • The Robust Controller for scan-loop is designed using LQG/LTR Methodology. The design and analysis of spiral, rosette and conical scan patterns are discussed. The perfermance and robustness of the LQG/LTR controller are analyzed through experiments and cpmpared with those of the P-controller. Especially to improve the scan performance at large look angle, the cage coil output is linearized using a binomial equation. It is demonstrated that the scan-loop system by the LQG/LTR control is very robust to phase uncertainties.

  • PDF

Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis (${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어)

  • Lee, Ho-Pyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF

$H_{\infty}$ Control of Seeker Scan-Loop using LSDP (LSDP를 이용한 탐색기 주사루프의 $H_{\infty}$ 제어)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.78-86
    • /
    • 1995
  • $H_{\infty}$ Controller of seeker scan-loop is designed using LSDP proposed by McFarlane. The performance and robustness of $H_{\infty}$ controller are analyzed using robustness theorems by Lehtomaki and compared with those of the LQG/LTR controller. Especially, structured singular value .mu. -test of Doyle is used to evaluate robust performance of seeker scan-loop. It is demonstated that seeker scan-loop by $H_{\infty}$ controller is very robust to model uncertainties described by additive and multiplicative perturbations.

  • PDF

Modelling and LQG/LTR Compensator Design of the Seeker Scan-Loop (탐색기의 주사루프 모델링과 LQG/LTR보상기 설계)

  • 황홍연;이호평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2730-2741
    • /
    • 1993
  • A mathematical model of the seeker scan-loop which is composed of a spin-stabilized gyroscope and its driving signal processors is derived. The derived model has a transmission zero pair on the imaginary axis near to the required bandwidth. The LQG/LTR design methodology is evolved for the derived scan-loop model. To implement the designed LQG/LTR compensator to the actual plant, the compensator order is reduced using the internally balanced realization method. The performances of the LQG/LTR compensator are tested and compared with those of the P-control. Especially, stability-robustnessexperiments for model uncertainties represented in the form of time-delays are performed. It is demonstrated that the LQG/STR compensator is actually very robust to model uncertainties.

Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop (탐색기 주사루프의 2자유도 강인제어기 설계)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

A decoupling controller design for the seeker scan loop with a spin-stabilized platform (자전 안정화형 탐색기 주사루프의 비연성 제어기 설계)

  • 유인억;이상정
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.35-41
    • /
    • 1998
  • This paper presents a decoupling controller of the missile seeker scan loop with a spin-stabilized platform. A precise seeker motion with respect to the scan command is essential for the higher acquisition probability of the target. As the seeker scan loop is a deeply cross-coupled two input two output system, an accurate pointing or scanning for each axis to the target is very difficult, even though provided with the help of a high performance controller. When a decoupling control is applied to the seeker scan loop, the cross-coupling between two axes can be reduced to a remarkable amount. As a low order of controller is required for the real time operation, a PI controller with decoupling filter is suggested and compared with other controllers. A linearized dynamic model of seeker scan loop is used and validated through the comparison of experimental results of step responses.

  • PDF