• 제목/요약/키워드: 탐사 방법론

Search Result 142, Processing Time 0.027 seconds

Satellite Imagery and AI-based Disaster Monitoring and Establishing a Feasible Integrated Near Real-Time Disaster Monitoring System (위성영상-AI 기반 재난모니터링과 실현 가능한 준실시간 통합 재난모니터링 시스템)

  • KIM, Junwoo;KIM, Duk-jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.236-251
    • /
    • 2020
  • As remote sensing technologies are evolving, and more satellites are orbited, the demand for using satellite data for disaster monitoring is rapidly increasing. Although natural and social disasters have been monitored using satellite data, constraints on establishing an integrated satellite-based near real-time disaster monitoring system have not been identified yet, and thus a novel framework for establishing such system remains to be presented. This research identifies constraints on establishing satellite data-based near real-time disaster monitoring systems by devising and testing a new conceptual framework of disaster monitoring, and then presents a feasible disaster monitoring system that relies mainly on acquirable satellite data. Implementing near real-time disaster monitoring by satellite remote sensing is constrained by technological and economic factors, and more significantly, it is also limited by interactions between organisations and policy that hamper timely acquiring appropriate satellite data for the purpose, and institutional factors that are related to satellite data analyses. Such constraints could be eased by employing an integrated computing platform, such as Amazon Web Services(AWS), which enables obtaining, storing and analysing satellite data, and by developing a toolkit by which appropriate satellites'sensors that are required for monitoring specific types of disaster, and their orbits, can be analysed. It is anticipated that the findings of this research could be used as meaningful reference when trying to establishing a satellite-based near real-time disaster monitoring system in any country.

Overview of Research Trends in Estimation of Forest Carbon Stocks Based on Remote Sensing and GIS (원격탐사와 GIS 기반의 산림탄소저장량 추정에 관한 주요국 연구동향 개관)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Kim, Eun-Sook;Park, Hyun-Ju;Roh, Young-Hee;Lee, Seung-Ho;Park, Key-Ho;Shin, Hyu-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.236-256
    • /
    • 2011
  • Forest carbon stocks change due to land use change is an important data required by UNFCCC(United Nations framework convention on climate change). Spatially explicit estimation of forest carbon stocks based on IPCC GPG(intergovernmental panel on climate change good practice guidance) tier 3 gives high reliability. But a current estimation which was aggregated from NFI data doesn't have detail forest carbon stocks by polygon or cell. In order to improve an estimation remote sensing and GIS have been used especially in Europe and North America. We divided research trends in main countries into 4 categories such as remote sensing, GIS, geostatistics and environmental modeling considering spatial heterogeneity. The easiest way to apply is combination NFI data with forest type map based on GIS. Considering especially complicated forest structure of Korea, geostatistics is useful to estimate local variation of forest carbon. In addition, fine scale image is good for verification of forest carbon stocks and determination of CDM site. Related domestic researches are still on initial status and forest carbon stocks are mainly estimated using k-nearest neighbor(k-NN). In order to select suitable method for forest in Korea, an applicability of diverse spatial data and algorithm must be considered. Also the comparison between methods is required.

GIS-based Spatial Integration and Statistical Analysis using Multiple Geoscience Data Sets : A Case Study for Mineral Potential Mapping (다중 지구과학자료를 이용한 GIS 기반 공간통합과 통계량 분석 : 광물 부존 예상도 작성을 위한 사례 연구)

  • 이기원;박노욱;권병두;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.91-105
    • /
    • 1999
  • Spatial data integration using multiple geo-based data sets has been regarded as one of the primary GIS application issues. As for this issue, several integration schemes have been developed as the perspectives of mathematical geology or geo-mathematics. However, research-based approaches for statistical/quantitative assessments between integrated layer and input layers are not fully considered yet. Related to this niche point, in this study, spatial data integration using multiple geoscientific data sets by known integration algorithms was primarily performed. For spatial integration by using raster-based GIS functionality, geological, geochemical, geophysical data sets, DEM-driven data sets and remotely sensed imagery data sets from the Ogdong area were utilized for geological thematic mapping related by mineral potential mapping. In addition, statistical/quantitative information extraction with respective to relationships among used data sets and/or between each data set and integrated layer was carried out, with the scope of multiple data fusion and schematic statistical assessment methodology. As for the spatial integration scheme, certainty factor (CF) estimation and principal component analysis (PCA) were applied. However, this study was not aimed at direct comparison of both methodologies; whereas, for the statistical/quantitative assessment between integrated layer and input layers, some statistical methodologies based on contingency table were focused. Especially, for the bias reduction, jackknife technique was also applied in PCA-based spatial integration. Through the statistic analyses with respect to the integration information in this case study, new information for relationships of integrated layer and input layers was extracted. In addition, influence effects of input data sets with respect to integrated layer were assessed. This kind of approach provides a decision-making information in the viewpoint of GIS and is also exploratory data analysis in conjunction with GIS and geoscientific application, especially handing spatial integration or data fusion with complex variable data sets.

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

Land-Cover Vegetation Change Detection based on Harmonic Analysis of MODIS NDVI Time Series Data (MODIS NDVI 시계열 자료의 하모닉 분석을 통한 지표 식생 변화 탐지)

  • Jung, Myunghee;Chang, Eunmi
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.351-360
    • /
    • 2013
  • Harmonic analysis enables to characterize patterns of variation in MODIS NDVI time series data and track changes in ground vegetation cover. In harmonic analysis, a periodic phenomenon of time series data is decomposed into the sum of a series of sinusoidal waves and an additive term. Each wave is defined by an amplitude and a phase angle and accounts for the portion of variance of complex curve. In this study, harmonic analysis was explored to tract ground vegetation variation through time for land-cover vegetation change detection. The process also enables to reconstruct observed time series data including various noise components. Harmonic model was tested with simulation data to validate its performance. Then, the suggested change detection method was applied to MODIS NDVI time series data over the study period (2006-2012) for a selected test area located in the northern plateau of Korean peninsula. The results show that the proposed approach is potentially an effective way to understand the pattern of NDVI variation and detect the change for long-term monitoring of land cover.

Development of Stochastic Model and Simulation for Spatial Process Using Remotely Sensed Data : Fire Arrival Process (원격탐사자료를 이용한 공간적 현상의 모형화 및 시뮬레이션 : 자연화재발생의 경우)

  • 정명희
    • Spatial Information Research
    • /
    • v.6 no.1
    • /
    • pp.77-90
    • /
    • 1998
  • The complex interactions of climate, topography, geology, biota and hwnan activities result in the land cover patterns, which are impacted by natural disturbances such as fire, earthquake and flood. Natural disturbances disrupt ecosystem communities and change the physical environment, thereby generating a new landscape. Community ecologists believe that disturbance is critical in determining how diverse ecological systems function. Fires were once a major agent of disturbance in the North American tall grass prairies, African savannas, and Australian bush. The major focus of this research was to develop stochastic model of spatial process of disturbance or spatial events and simulate the process based on the developed model and it was applied to the fire arrival process in the Great Victoria Desert of Australia, where wildfires generate a mosaic of patches of habitat at various stages of post-fire succession. For this research, Landsat Multi-Spectral Scanner(MSS) data covering the period from 1972 to 1994 were utilized. Fire arrival process is characterized as a spatial point pattern irregularly distributed within a region of space. Here, nonhomogeneous planar Poisson process is proposed as a model for the fire arrival process and rejection sampling thinning the homogeneous Poisson process is used for its simulation.

  • PDF

Extraction of Agricultural Land Use and Vegetation Information using KOMPSAT-3 Resolution Satellite Images (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 식생 정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jong-Hwa;Shin, Hyung-Jin;Jung, In-Kyun;Jung, Chul-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.31-34
    • /
    • 2009
  • 본 연구에서는 KOMPSAT-3급 고해상도 위성영상을 이용하여 전처리 후 정밀 농업 주제정보를 추출하는 방법론을 제시하고자 하였다. 분석에 사용한 KOMPSAT-3급 고해상도 위성영상은 IKONOS (2001/5/25, 2001/12/25, 2003/10/23) 3개의 영상, QuickBird (2006/5/1, 2004/11/17) 2개의 영상, KOMPSAT-2 (2007/9/17) 1개의 영상 등 모두 6개의 영상을 확보 및 각각에 대한 현장 GCP자료 및 RPC, RPB 자료를 수집하여 정사보정을 실시하였다. RMSE는 약 $0.12\sim3.18$의 값으로 분포되었다. KOMPSAT근 급 영상자료로 부터 정밀농업물재배지도를 작성하기 위해 각 벤드별 Scatter기법을 이용하여 각 밴드간의 상간관계를 살펴보고, 3개의 최적의 밴드를 선정하였다. 또한 작물별 최적의 밴드 결정을 위해 각 밴드별 픽셀 값을 사용하여 Texture 분석을 실시하였다. 그 결과 논의 경우 모든 밴드에서 분석이 용이 한 것으로 분석되었으며, 4밴드의 경우 3개의 작물(고추, 옥수수, 벼)의 분석시 매우 적합한 밴드인 것으로 분석되었다. 각 영상별 필터링 기법과, ISODATA 방법을 이용한 정밀농업 토지이용도 작성하여 기존 스크린 디지타이징 기법으로 작성한 정밀토지이용도와 비교하였다. 다양한 식생정보를 추출하는 위하여 확보된 영상자료로부터 RVI, NDVI, ARVI, SAVI 식생지수 를 추출하였으며, 그 결과를 현장자료로부터 추출한 식생지수간의 결과 값과 비교분석하였다.

  • PDF

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.

Analysis of suspended sediment mixing in a river confluence using UAV-based hyperspectral imagery (드론기반 초분광 영상을 활용한 하천 합류부 부유사 혼합 분석)

  • Kwon, Siyoon;Seo, Il Won;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.89-89
    • /
    • 2022
  • 하천 합류부에 지천이 유입되는 경우 복잡한 3차원적 흐름 구조를 발생시키고 이로 인해 유사혼합 및 지형 변화가 활발히 발생하게 된다. 특히, 하천 합류부에서 부유사 거동은 하천의 세굴과퇴적, 하천 지형 변화, 하천 생태계, 하천구조물 안정성 등에 직접적으로 영향을 미치기 때문에 이에 대한 정확한 분석이 하천 관리 및 재해 예방에 필수적인 요소이다. 기존의 하천 합류부 부유사 계측 자료들은 재래식 채취 방식으로 수행되어 시공간적 해상도가 매우 낮아서 실측 자료만으로 합류부에서 부유사 혼합을 분석하기에는 한계가 존재하기에 대하천의 부유사 혼합 거동 해석에 수치모형이 주로 활용되어 왔다. 본 연구에서는 하천 합류부에서 부유사 거동을 공간적으로 정밀하게 분석하기 위해 드론 기반초분광 영상을 활용하여 하천 합류부에 최적화된 부유사 계측 방법론을 제시하였다. 현장에서 계측한 초분광 자료와 부유사 농도간의 관계를 구축하기 위하여 기계학습모형인 랜덤포레스트(Random Forest) 회귀 모형과 합류부에서 분광 특성이 다른 두 하천의 특성을 정확하게 반영하기 위한 가우시안 혼합 모형 (Gaussian Mixture Model) 기반 초분광 군집화 기법을 결합하였다. 본 연구에서 구축한 방법론을 낙동강과 황강의 합류부에 적용한 결과, 초분광 군집을 통해 두하천 흐름의 경계층을 명확히 구별하였으며, 이를 바탕으로 지류와 본류에 대해 각각 분리된 회귀 모형을 구축하여 복잡한 합류부 근역 경계층에서의 부유사 거동을 보다 정확하게 재현하였다. 또한 나아가서 재현된 고해상도의 부유사 공간분포를 바탕으로 경계층에서 강한 두 흐름이 혼합되어 발생한 와류(Wake)가 부유사 혼합에 미치는 영향을 규명하였고, 하천 합류부에서 발생하는 전단층의 수평방향 대규모 와류가 부유사 혼합 양상에 지배적 영향을 미치는 것으로 확인하였다.

  • PDF

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.