• Title/Summary/Keyword: 탈황 폐수

Search Result 9, Processing Time 0.027 seconds

타이타니아계 촉매 환원반응에 의한 아황산가스의 제거

  • 권재범;정종국;우희철;이내우
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.164-168
    • /
    • 2000
  • 화석연료의 사용증가로 인해 배출되는 산성가스인 $SO_2$, NOx 는 보건위생상 독성물질로서, 산성비의 주요 성분으로 규제의 대상이며, 이를 감소시키기 위한 노력이 활발히 진행되어 왔다. 배연가스중의 $SO_2$ 처리 공정의 대표적 예는 석회석 슬러리를 이용한 습식 탈황으로 여러 나라에서 사용되고 있으나, 폐수발생과 넓은 설치면적, 고형 폐기물의 발생 등으로 인하여 보다 개선된 공정의 개발이 요구되고 있다. 이에 유망한 기술로 제시되고 있는 것이 재생탈황공정이다. (중략)

  • PDF

A study on the desulfurization wastewater treatment using Ferrate(VI) (Ferrate(VI)를 이용한 발전소 탈황폐수 처리에 관한 연구)

  • Jo, Eun-young;Park, Chan-gyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2017
  • Wastewater treatment using ferrate (VI) solution is becoming a promising technology for several years, because it is high efficient and harmless technology. In this study, the ferrate (VI) solution was tested to treatment of desulfurization wastewater. The effluent from desulfurization wastewater treatment process of power plant was used as raw water, and the COD and T-N removal efficiency of ferrate(VI) solution were investigated. In the test, as the injection rate increased from 0.1 to 1.0%, the removal efficiency of COD also slightly increased, about 80% of COD were removed in 1.0% of injection rate. In the case of T-N, about 50% of T-N was removed in the condition of 1.0% of injection rate. The removal efficiency of COD and T-N also affected by reaction time, maximum removal efficiency was shown in 30 min of treatment. From these results, the wastewater treatment with ferrate(VI) solution can be great solutions for treatment of non-biodegradable pollutants in wastewater, especially for the 3rd treatment of wastewater.

Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process (전해처리법에 의한 탈황폐수 중의 COD 및 총 질소 제거)

  • Cha, Go-Eun;Noh, Da-Ji;Seo, Jeong-Hyeon;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1073-1078
    • /
    • 2013
  • This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.

A study on the hot gas cleanup of waste-derived fuel gas (폐기물 합성가스의 활용을 위한 고온 정제 공정 적용 연구)

  • Kim, Narang;Yoo, Youngdon;Jung, Kijin;Kim, Jeongheon;Kim, Byunghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.172.2-172.2
    • /
    • 2011
  • 다양한 저급연료나 폐기물로부터 가스엔진이나 연료전지의 연료로 사용하기위한 연료가스를 얻기 위한 방법으로 가스화 기술을 적용할 수 있다. 폐기물의 가스화를 통해 발생된 합성가스에는 CO, $H_2$, $CO_2$와 같은 주요성분 이외에 황화합물($H_2S$, COS), 염소화합물(HCl), 고형 물질(분진)등의 오염물질이 포함되어 있으므로, 이용목적에 따라 적절한 정제 기술이 필요하게 된다. 현재 가장 널리 알려진 저온 습식 정제공정은 장치운전이 쉽고 오염물질 제거효율이 높은 장점이 있으나, 합성가스 온도를 상온까지 낮추기 때문에 현열 손실이 발생하는 단점을 가지고 있다. 고온 건식 정제공정에 의해 $300^{\circ}C$ 이상의 고온에서 오염물질의 제거가 가능하다면 에너지 이용효율을 높일 수 있고, 습식공정에 의해 발생되는 폐수처리에 따른 비용 절감효과도 얻을 수 있다. 폐기물 합성가스를 최종 적용처에 이용하기위한 고온 정제 공정의 적용을 위해 흡착제를 이용하여 탈황, 탈염 실험을 실시하였고, 실험결과로부터 장치 설계의 기초인자를 도출하였다.

  • PDF

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Design Study of Fuel Supply System for 5MW-class Bio Gasturbine by Using Food Waste Water (5MW급 바이오 가스터빈용 전처리시스템 설계연구)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.10-17
    • /
    • 2011
  • Korea is the 11th largest energy consumption country and 96% of its total energy consumption depends on imports from overseas. Therefore it is a very important task to secure renewable energy sources which can reduce both the carbon-dioxide emission and dependency on overseas energy imports. Among the various renewable energy sources, organic wastes are important sources. In Korea, 113 million toe of methane is generated from organic wastes annually, but only 3.7% is effectively used for energy conversion. Thus, it is very important to make better use of organic wastes, especially for power generation. The goals of this project are to develope the fuel supplying system of Bio Gasturbine (GT) for 5MW-class co-generation system. The fuel supplying system mainly consists of $H_2S$ removal system, Bio Gas compression system, Siloxane removal system and moisture separating systems. The fuel requirement of 5MW-class GT is at around 60% of $CH_4$, $H_2S$ (<30 ppm), Siloxane(<10 mg/$nm^3$) and supply pressure (> 25 bar) from biogas compressor. Main mechnical charateristics of Bio Gasturbine system have the specific performance; 1) high speed turbine speed (12,840 rpm) 2) very clean emmission NOx (<50 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for food waste biogas pretreatment system for 5MW-class biogas turbine. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of bioenergy, this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Precision Monitoring (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(II): 도시가스 및 수송용 - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • This study carried out on-site investigation and precision monitoring to prepare proper design and operation technical guidelines for the use of bio gas in organic waste resources (fertilizing urine, food waste, food waste, food waste, etc.). According to the government's mid- and long-term policy on bio gasification, the expansion of waste resources is actively being pushed forward. However, facilities that use the biogas produced for urban gas and transportation are still under-efficient. Precision monitoring was carried out for biogasification facilities of organic waste resources in seven locations nationwide. When the results of precision monitoring were summarized with the four-season average, the efficiency analysis of each organic waste resource showed that the organic breakdown rate was 66.3% on average on VS basis. Analysis of biogas characteristics before and after pretreatment revealed that the $H_2S$ average of the entire facility was measured at 949.7 ppm using iron salts and desulfurization (dry, wet) and that the quality refining facility shearing and rear end was 29.0 ppm and 0.3 ppm. The methane content was found to be reduced by 65.6% at the rear of the fire tank, 63.5% at the back and 97.5% at the rear.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.