• Title/Summary/Keyword: 탈염방법

Search Result 57, Processing Time 0.03 seconds

A Study on Desalination Methods for Application of Outdoor Iron Artefacts (옥외 철제문화재 적용을 위한 탈염처리 방법 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul;Kim, Woo-Hyun
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.49-60
    • /
    • 2009
  • Outdoor iron artefacts are easily corroded by salts, especially $Cl^-$ion, from environmental pollutants and acid rain because of their location, so that they need conservational treatments such as stabilization. However the conservation of outdoor iron artefacts are limited to be consolidated for the present and there are a few the studies for the desalinization. The general desalinization method is that objects are immersed in reagent such as alkaline corrosion inhibiting solutions targeting on buried iron artefacts, thus they are not available for outdoor iron artefacts. In this study, concerning those difficulties, the different desalting method is experimented that materials soaked in alkaline solutions attach to objects and they are packed by waterproof to avoid evaporation. This paper experiment burial iron artefacts at first in order to fine out an adaptable method for outdoor iron artefacts. The soaking materials are Korean traditional paper, gauze, cotton wipers, spill pads and the desalting regent is NaOH 0.1M. Additionally the exiting desalinization method which is to immerse objects in solution is performed to compare. The analyses are microscopes, SEM-EDS, X-ray diffraction, pH meter and Ion chromatography. The result is that spill pads show the best desalting effect out of other materials similar to immersing desalting method.

  • PDF

A Study of Conservation and Desalination Methods for an Iron Stele of the Joseon Dynasty (조선시대 철비(鐵碑)의 보존처리와 탈염방법 비교 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.399-409
    • /
    • 2009
  • Outdoor iron artefacts are easily corroded by affection of environmental pollutants directly. Especially they need to be removed $Cl^-$ ions, but outdoor iron artefacts are excluded for desalination owing to their special features. Therefore this study contains the conservation processes of an iron stele of the Joseon Dynasty as the sample as well as desalination experiments that were carried out the desalting method using spill pads and the immersion desalting method together in order to compare. Desalting methods were compared by analyses such as an optical and metallurgical microscope, SEM-EDS, pH meter, Ion Chromatography and X-ray diffraction. As a result of the analysis, the optical and metallurgical microscopy show that the corrosion products are constituted by the layers and the metallurgical microstructure is a white cast iron. The SEM-EDS results of corrosion products detected mainly Fe, O, and especially Cl upto 2.48wt%. The results of pH and anion analysis for the washing solution, the desalting method using spill pads shows the similar effect to the immersion desalting method. As a result of XRD analysis before and after desalting corrosion products, goethite, magnetite, lepidocrocite and akaganeite are detected before desalting, but akaganeite is not detected after desalting at the desalting methode using spill pads, which indicates to have an effect on desalination. Therefore the results show that the desalting method using spill pads has an effect on desalination similar to the immersing desalting method.

  • PDF

Experimental Study of Desalting Methods Using Ethyl Alcohol for Archaeological Cast Iron Objects (에틸알코올 용매를 이용한 주조철제유물의 탈염 실험 연구)

  • Lee, Hye Youn;Cho, Ju Hye
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Excavated archaeological cast iron objects in improper storage are quickly corroded and disintegrated into block and powder finally. Hence desalination treatment which is a way of removing internal corrosive factors, especially chloride ion, is an important process. But desalination is often omitted or objects are dehydrated by alcohol because the destruction of objects could occur during desalting. Although current desalting methods mostly use an aqueous alkali solution, $OH^-$ ions of water could accelerate corrosion and broaden internal cracks cause of high surface tension. Therefore this study experimented desalting using ethyl alcohol, which is low surface tension, to investigate an effect of desalination. As a result, desalting using ethyl alcohol showed the similar or more effective results of desalting using water. In addition, as aspects of desalting safety, ethyl alcohol desalting method was smaller destruction of objects and extraction of Fe from the objects than the aqueous alkali solution. However, this study explored the possibility of desalting methods using organic solvent in fieldwork, so the results would provide basic date for making the safe and effective desalting method for archaeological cast iron objects through further experiments.

The Study on Desalting Method for Removing Chloride ions and Corrosion Products of Iron artifacts (철제유물의 탈염처리 방법 및 부식생성물에 관한 연구)

  • Yu, Jae Eun;Hwang, Hyun Sung;Koh, Kyong Shin
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2002.02a
    • /
    • pp.45-52
    • /
    • 2002
  • 본 연구에서는 KaOH, $K_2CO_3$, Sodium, 그리고 1차 이온수 용액의 $Cl^-$ 이온 추출량과 부식생성물의 생성순위, 부식물 생성, 그리고 부식물 제거에 관하여 관찰하였으며 이 연구로 아래와 같은 결과를 얻었다. $Cl^-$ 이온 추출량에 대한 실험 결과 NaOH은 탈염 초기에는 Cl- 이온을 잘 추출시켰으나 탈염 횟수가 증가하면서 $Cl^-$ 이온의 추출량이 급감하였다. 또한 유물 중량 변화에도 감소폭이 가장 심하였다. $K_2CO_3$은 NaOH나 1차이온수 용액과 비교해 보면 이 방법은 탈염처리동안 $Cl^-$ 이온을 꾸준히 추출시켜 주었으며 다른 탈염용액에 비해 유물 중량변화가 거의 관찰되지 않았다. Sodium 용액은 $K_2CO_3$ 용액과 마찬가지로 탈염처리 동안 $Cl^-$ 이온을 꾸준히 추출시켰으며 다른 탈염 용액에 비해 $Cl^-$ 이온 추출량이 가장 많았다. 하지만 이 용액은 약품 내에 불순물인 $Cl^-$ 이온을 $3\~5\;ppm$을 기지고 있어 보존처리자가 탈염처리를 할 때 좀 더 신중하게 생각해야 할 것 같다. 1차 이온수 용액은 부식인자가 $Cl^-$이온을 완전하게 제거해주지는 못하였지만, pH가 $7.5\~7.9$로 다른 탈염 용액에 비해서 전위차가 낮으며, 별도로 탈알칼리 처리를 하지 않아도 되기 때문에 유물손상은 극소화할 수가 있다. 따라서 이 용액은 부식이 매우 심한 철제 유물이나 균열이 많은 주조 철편과 같은 유물을 처리할 때 적절한 용액이다. 부식생성물 관찰에서는 출토 철기 유물에 생성된 부식물은 주로 인철광$(\gamma-FeOOH)$, 침철광$(\alpha-FeOOH)$, 적금광$(\beta-FeOOH)$, 그리고 자철광$(Fe_3O_4)$이다. 인위적 부식에서는 전부 인철광의 부식물이 생성되었고 자연적 부식에서는 모두 침철광의 부식물이 생성되었다. 특히 철제 표면에 자연적으로 생성된 공식 녹을 XRD 분석한 결과 적금광으로 동정되었다. 이런 모든 시편들을 각 탈염방법에 따라 탈염처리한 후 XRD와 SEM-EDS으로 분석한 결과 인철광과 침철광은 어떠한 변화도 보이지 않았고, 다만 적금광으로 동정된 시편만이 잔존하지 않았다. 철기 제작별 $Cl^-$ 이온 추출량과 탈염효과에 대한 비교 실험은 이온 크로마토그래피 분석 결과와 마찬가지로 단조 철제유물이 주조 철제보다 $Cl^-$ 이온을 많이 가지고 있었으며, 탈염 처리 후에는 $Cl^-$ 이온은 전혀 발견되지 않았다. 이상의 결과 $K_2CO_3$와 Sodium 용액은 탈염처리에서 가장 적합한 탈염처리 용액으로 알수가 있었으며 특히 어떠한 탈염 용액으로 유물을 처리한다 해도 철제유물에 생성된 부식물은 제거되지 않는다는 것을 알게 되었다. 따라서 보존처리자는 유물 표면의 부식 상태만을 보고 처리하기 보다는 철기제작물로 고려하여 처리하는 것이 필요하다. 또한 금속에 부식을 야기시키는 $Cl^-$ 이온과 부식물을 완전하게 제거하여 탈염처리를 하는 것이 유물 부식을 최대한 지연시킬 수 있는 것이라 생각된다.

  • PDF

A Study on Conservation and Desalination for Iron Weapons During the Korean War from DMZ (비무장지대 한국전쟁 전사자 유해발굴 수습 철제 총기류의 보존처리와 탈염처리 방법 고찰)

  • Jo, Ha Nui;Nam, Do Hyeon;Kim, Mi Hyun;Lee, Jae Sung
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.821-830
    • /
    • 2021
  • The weapons excavated from the de-militarized zones (DMZ) of Korea are vulnerable to corrosion due to the immediate and drastic environmental change. Especially, the chloride ions (Cl-) in iron weapons cause active corrosion and require removal. In this study, conservation treatment and de-salination was performed for the discovered weapons from excavation sites of soldiers killed in action during the Korean War. Furthermore, an attempt was made to prepare the most stable plan for conservation treatment through the comparative study of soaking weapons in distilled water without chemicals and in a solution of sodium (SSC) at different temperatures. In the preliminarily experiments, the comparison of the eluted Cl- ions according to different conditions of de-salination showed that the highest number of ions were detected from the de-salination with SSC at a temperature of 100℃, and its duration was much smaller, i.e., 1~2 weeks. Accordingly, for the parts from the guns and rifles amongst other objects, a six-time de-salination was conducted in the SSC solution for 8 hours at 100℃ and subsequently, for 16 hours at room temperature during which the distilled water and SSC were exchanged every week. However, in the case of a loaded rifle, the de-salination was not conducted, considering the risk that the high temperature and pressure by impregnation in vacuum could cause an explosion

Desalting Processing and Quality Characteristics of Salt-Fermented Anchovy Sauce Using a Spirit (주정을 이용한 멸치액젓의 탈염공정 및 품질특성)

  • Jang, Mi-Soon;Park, Hee-Yeon;Nam, Ki-Ho
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.893-900
    • /
    • 2012
  • To establish a new manufacturing process of low-salted fermented anchovy sauce, commercial fermented anchovy sauce with 23% NaCl was desalted using a spirit. The proximate composition, total nitrogen, amino nitrogen, Escherichia coli, and total and free amino acid contents were analyzed to evaluate the quality characteristics of commercial salted fermented anchovy sauce (CFAS) and low-salt fermented anchovy sauce by desalting processing (LFAS). The salinity of saltwater and fermented anchovy sauce decreased with an increase in the spirit added to 23% NaCl saltwater and 23% NaCl commercial fermented anchovy sauce. The total nitrogen and amino nitrogen contents were higher in LFAS than in CFAS. The major amino acids that were commonly found in CFAS and LFAS were glutamic acid, alanine, lysine and leucine. Basic data were provided for commodification research on low-salt fermented anchovy sauce, which is very important for the diet of humans.

A Study on the Stability of Using Alkali Solution Desalination on Gilt Plated Silver-Iron Artifacts (알칼리 수용액을 이용한 출토 철지금은장관정의 탈염처리 적용성 평가)

  • Park, Jun Hyeon;Bae, Go Woon;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.179-189
    • /
    • 2021
  • In this study, the research objects are gilt plated silver-iron nails excavated from the west of the tombs in Neungsan-ri, Buyeo. A gilt plated silver-iron nail was fabricated by combining silver and iron via heating and then gilding amalgam on top of this combination, demonstrating that this ancient artifact that can be replicated using current technology. Since the metal (Au, Ag) surface of these gilt plated artifacts are covered with iron oxide, which slips into the cracks and scratches of the artifacts as well, desalination is essential. Based on the results of the preliminary experiment, the research objects were classified into grades A, B, and C, according to the degree of corrosion and then desalinated using an alkali solution (NaOH, Sodium Sesquicarbonate of 0.1 M) at 60℃. The results demonstrate that the more serious is the degree of corrosion, the more is the amount of Cl- detected. Further, more Cl- was released when NaOH was used than when sodium sesquicarbonate was used, for all grades except Grade A. Furthermore, the more serious is the degree of corrosion, the longer is the desalination period and the reaction with NaOH for all grades except Grade A. A comparison of the Fe composition of the surface before and after desalination shows that Fe composition is the use of NaOH resulted in a smaller increase compared with the use of sodium sesquicarbonate, for all grades except Grade B. However, four of the nails were damaged owing to NaOH (Grade B 3ea, Grade C 1ea) during desalination. Thus, Cl- ions are more stably released when sodium sesquicarbonate is used than when NaOH is used.

Stability Evaluation on Measuring Water-soluble Chloride Anions from Iron Artifacts (철제유물의 수용성 염소이온 측정방법에 대한 안정성 평가)

  • Lee, Jae-Sung;Park, Hyung-Ho;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • The most ideal method to measure the water-soluble $Cl^-$ ion eluted from iron artifacts is conducting the analysis on desalting solution by Ion Chromatography. But most institutes related to cultural heritages use Cl meter by reason of lack of budget and experts. This study evaluated reliability and stability between Cl meter and Ion Chromatography by doing cross-validation with results from two methods to detect $Cl^-$ ion of desalting solution. From D.I water, extremely small quantities of $Cl^-$ ion was detected by the influence of remaining water-soluble $Cl^-$ ion at the electrode of Cl meter and water-soluble $Cl^-$ which remains in Sodium sesquicarbonate, components of reagent was detected as well. The first desalting solution had the most $Cl^-$ ions, $Cl^-$ ion slightly decreased from the second to the fourth desalting solution and tend to decrease again at the stage of dealkalified in D.I water. Each Cl meter has the standard deviation according to the measured numbers and the higher concentration of $Cl^-$ ion the desalting solution has, the wider the deviation is. But when the concentration of $Cl^-$ ion is low, it was stable to use Cl meter to detect the concentration of $Cl^-$ ion from iron artifacts because there is the small deviation, It is thought that conductivity meter method is not suitable for measuring $Cl^-$ ion, because the electrical conductivity of alkaline solution is too high to measure $Cl^-$ ion.

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis (전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술)

  • Moon, Jeong-Ki;Park, Kwang-Seok;Yoo, Yoon-Ki;Yun, Young-Ki
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.

Stable Desalination of Hardness Substances through Charge Control in a Capacitive Deionization System (축전식 탈염 시스템에서 전하량 제어를 통한 경도물질의 안정적인 탈염)

  • Kim, Yoon-Tae;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.472-478
    • /
    • 2019
  • A stable desalination method of the hardness substance such as $Ca^{2+}$ by controlling the total charge (TC) supplied to the membrane capacitive deionization (MCDI) cell was studied. The adsorption (1.5 V) and desorption (0.0 V) were repeated 30 times while varying the TC in the adsorption process. The concentration and pH of effluent, adsorption and desorption amounts, current densities and cell potentials were analyzed in the desalination process. The maximum allowable charge (MAC) of the carbon electrode used in MCDI cell was measured to be 46 C/g. As a result of operation at TC (40 C/g) below the MAC value, electrode reactions did not occur, resulted in the stable desalination characteristics for a long-term operation. When operating at TCs (50, 60 C/g) above the MAC value, however, the concentration and pH of effluent varied greatly. Also, the scale was formed on the electrode surface due to electrode reactions, and the electric resistance of the cell gradually increased. It was thus concluded that it is possible to remove stably the hardness substance without any electrode reactions by controlling the charge supplied to MCDI cell during the adsorption process.