• Title/Summary/Keyword: 탈선

Search Result 180, Processing Time 0.024 seconds

A 3-dimensional Wheel-rail Contact Analysis of Railway Vehicle with 2-point Contacts (2점 접촉을 고려한 철도차량의 3차원 휠-레일 접촉해석)

  • Kang, Ju-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.43-52
    • /
    • 2010
  • In this study, the shapes of the wheel and rail are represented by using 3-dimensional surface functions with surface parameters and a 3-dimensional wheel-rail contact analysis is presented. A whole numerical solution of wheel-rail contact at tread and flange including 2-point contacts can be achieved with the proposed numerical algorithm. Kinematic characteristics such as variances of vertical displacement and roll angle, and variance of wheel radius difference for arbitrary yaw and lateral displacement of wheelset, are determined for the KTX wheel-rail pair as an example. The condition of yaw and lateral displacement occurring 2-point contacts to analyze derailment are compared between standard and worn wheels. Differences of contact characteristics between curved and straight rails are also analyzed.

Review on the Dynamic Behavior of G7 High Speed Train(KHST) in the KTX Test Line (경부고속철도 시험선 구간에서 G7 고속전철 차량의 동특성 검토)

  • 박찬경;김영국;배대성;박태원
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.131-137
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because of its safety and passengers' ride comfort. The railway vehicle is composed of many suspension components, such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and the track geometry affect the dynamic behavior of high speed train. This paper reviews the dynamic behavior of KHST in the KTX test line. The VAMPIRE program is used for this simulation. The simulation results are within the limits of safety criteria. Thus the KHST can operate safely at 350 km/h in the KTX test line.

  • PDF

Measurement of contact position between wheel and rail for clarification of derailment mechanism (탈선 매커니즘 해명을 위한 차륜/레일 접촉위치 측정)

  • Ham Young-Sam;Hong Jai-Sung;Lee Kwan-Sup;Seo Byung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.608-612
    • /
    • 2004
  • Safety from derailment has been evaluated according to the magnitude of the derailment coefficient, which does not always ensure sufficient safety evaluation, and is not necessarily helpful in clarifying the mechanism of derailment. When wheel rolls, point of contact between wheel and rail was change continuously and flange touches with rail. Established gauge so that can measure location of contact point between wheel and rail by strain gauge. Also, wish to describe result that compose bridge circuit and execute load test.

  • PDF

Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels (레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰)

  • Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1319-1327
    • /
    • 1994
  • Since fatigue cracks in rail can be the source of fractures and subsequent derailments, quantitative evaluation of the fatigue behavior and fracture properities due to the analysis results of laboratory test are drawn on the basis for predicting fatigue life and making a decision of safe inspection interval. Charpy V-notch and fracture toughness behavior were evaluated from the results of Charpy impact test. Fatigue test was performed by using CT type specimen under constant amplitude loading, and finally the effects of the following parameters; crack orientation, temperature, and stress ratio, on the fatigue crack growth behavior were studied.

  • PDF

Evaluation of running safety and measuring wheel/rail force for korean high speed railway vehicle (한국형 고속철도차량의 차륜/레일 작용력 측정 및 주행안전성 평가)

  • 함영삼;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.507-512
    • /
    • 2003
  • The railroad is a means of large transportation which has many latents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static toad test, running test result of main line.

  • PDF

Numerical Simulation of Dynamic Behaviour of a Gauge-changeable Freight Wagon (궤간가변화차의 동특성 수치해석)

  • Jang Seung-Ho;Lee Il-Seung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.461-466
    • /
    • 2006
  • In order to transport cargo rapidly and safely from the trans-Korean railway to the trans-Siberian railway having a different gauge, a gauge-changeable freight wagon can be used. Because the wagon is expected to run in South Korea, North Korea and Russia, it should have good dynamic performance in these railways. In this paper, the dynamic characteristics of a gauge-changeable freight wagon was analyzed numerically using ADAMS/Rail in each condition of the railways having different gauges and rail profiles. The wagon makes use of load sensitive friction damping and has highly nonlinear behaviour, which is modeled in detail as the full nonlinear dynamic model. It is shown that the running behaviour of the wagon is sensitive to changes in the rail gauge and profiles, however the assessment quantities from the point of view of safety, track fatigue and running behaviour are less than the limit valves.

Running Safety of High Speed Freight Bogie (고속주행용 화차대차의 주행안전성)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.116-122
    • /
    • 2001
  • As freight traffic becomes heavier, the high speed of existing freight cars is essential, instead of the construction of a new railway. The high speed can be achieved by the modifications of freight bogie design. In this paper, an analytical model of freight bogie is developed to decide the critical speed. The dynamic responses of the analytical model are compared with the experimental data from a running test of freight bogie and showed good agreements between them. The analytical model is used to find the design of freight bogie. The parameter studies show that the reduction of wheelset mass ratio and the increase of the axle distance of freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this study also shows that smaller wheel conicity deteriorates the running safety of freight car, which means that the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

A Study on Derailment Possibility that can Analogize from Vibration and Displacement of Rolling Stocks (철도차량의 진동과 변위로부터 유추할 수 있는 탈선가능성에 관한 연구)

  • Hong, Yong-Ki;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.743-748
    • /
    • 2007
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Especially, a newly developed vehicle that first runs commercially requires necessarily the measurement and evaluation of derailment coefficient for securing the safety of a vehicle while measuring the derailment coefficient in view of securing running safety could be the more important factor than any other factors. In this paper, examined possibility that can forecast derailment possibility to behavior of only vibration and displacement by measuring vibration acceleration and displacement in vehicles that travel actuality rail track, and compares with data of wheel load/lateral force result.

  • PDF

A Study on New Measurement of Derailment Coefficient for Rolling Stocks (철도차량의 새로운 탈선계수 측정방법에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.306-312
    • /
    • 2007
  • The running safety of rolling stock is assessed by derailment coefficient. It requires lots of preparatory time, expenditure and high measurement technique to measure derailment coefficient. If derailment coefficient could be measured when track or vehicle is maintained, safety will be improved. The measurement and assessment of running safety is necessary for safety especially for the vehicles newly developed and started service. Therefore measurement of derailment coefficient is most important thing to secure running safety. In this paper, we examined new assessment method which could estimate derailment coefficient by measuring vibration acceleration and displacement of vehicle operating at actual track irrespective of time and place. The new method could be used effectively as a mean confirming running safety.

  • PDF

An Assessment of Derailment Safety of Railway Vehicle depending on Curve Rail Condition (곡선부 선로 조건에 따른 차량의 탈선안전도평가)

  • Yoo, Hee-Sang;Park, Kwang-Soo;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.953-958
    • /
    • 2007
  • To assess the derailment safety of the Samaeul Train, We developed a fleet analysis model and carried out sensitivity analysis of the variables related to derailment factors with ADAMS/Rail computing analysis method. Depending on the variation of the running speed in curve section, derailment coefficient and wheel load reduction rate are high at right side wheels in slow running speed section and low at left side wheel in high running speed. According to decreasing the radius of curve, derailment coefficient and wheel load decreasing rate are increased. Derailment coefficient is proportional to transition curve length and wheel load decreasing rate is constant. Cant value rising causes wheel load deduction rate rising.

  • PDF