• Title/Summary/Keyword: 탄화수소연료

Search Result 293, Processing Time 0.049 seconds

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand (Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구)

  • Kim, Soo Hyun;Lee, Roosse;Sohn, Jung Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2021
  • In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process (F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.204-210
    • /
    • 2020
  • In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

Parametric Study of SOFC System Efficiency Under Operation Conditions of Butane Reformer (부탄 개질기 운전조건에 따른 SOFC 시스템 효율에 대한 연구)

  • Kim, Sun-Young;Baek, Seung-Whan;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • In this study, the efficiency of a solid-oxide fuel cell (SOFC) system with a steam reformer or prereformer was analyzed under various conditions. The main components of the system are the reformer, SOFC, and water boiling heat recovery system. Endothermic and exothermic reactions occur in the reformer and SOFC, respectively. Hence, the thermal management of the SOFC system greatly influences the SOFC system efficiency. First, the efficiencies of SOFC systems with a steam reformer and a prereformer are compared. The system with the prereformer was more efficient than the one with steam reformer due to less heat loss. Second, the system efficiencies under various prereformer operating conditions were analyzed. The system efficiency was a function of the heat requirement of the system. The efficiency increased with an increase in the operating temperature of the prereformer, and the maximum system efficiency was observed at $450^{\circ}C$ for a S/C of 2.0.

A Study on the Isomerization Reactions of Tricyclopentadiene Derivatives Using Aluminum Chloride(AlCl3) Catalyst(I) (알루미늄클로라이드 촉매를 이용한 Tricyclopentadiene 유도체의 이성화 반응 연구(I))

  • Jo, Hyun-Hye;Kwon, Tae-Soo;Park, Chang-Sun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.17-24
    • /
    • 2012
  • Tetrahydrotricyclopentadiene(below THTCPD) isomer is a good candidate materials for the high performance liquid fuel component because of its high density and heat of combustion value. The object of this study was to find out the proper reaction condition to improve the fluidity of THTCPD which is solid state at room temperature. Therefore, we have carried out isomerization reactions using aluminum chloride in the varying reaction condition such as reaction temperature and solvents. The results showed that when using aluminum chloride catalyst, THTCPD isomerization reaction was more active in the polar halogenated reaction media such as dichloromethane(methylene chloride: MC), 1,2-dichloroethane(ethylene chloride: EC) and chloroform than in non-polar hydrocarbon media such as n-Hexnae and toluene and was effected by reaction temperature variation.

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

Determination of Optimum Reaction Conditions for Pyrolytic Coprocessing of Waste Plastics with Waste Motor oil by Statistical Experimental Design (통계적 실험계획에 의한 폐플라스틱/폐유의 최적 열분해 반응조건 결정)

  • Yoon, Wang-Lai;Park, Jong-Soo;Jung, Heon;Lee, Ho-Tae;Ko, Sung-Hyuk;Kim, Sung-Hyun
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.189-201
    • /
    • 1999
  • 범용 열가소성 플라스틱(polyethylene(PE), polypropylene(PP), polystyrene(PS), polyethylene-terephthalate(PET), acrylonitrile-butandiene-styrene(ABS))과 폐윤활유의 동시처리 열분해반응 실험을 수행하였다. 반응실험은 40$m\ell$ 용량의 회분식 미분반응기(microreactor)를 이용한 실험과 1리터 용량의 autoclave를 이용한 실험의 두 가지로 구분하여 행하였다. 전자의 경우는 통계적 실험적계획법(statistical experimental design)의 하나인 회전계획실험(rotatable design experiments)으로서 오각형 실험계획(pentagonal experimental design)에 의거한 반응변수 실험을 수행한 후 반응표면(response surface)을 회기분석법에 의하여 분석함으로써 최대의 오일 수율을 얻을 수 있는 최적 반응조건을 추적, 결정하였다. Autoclave 반응실험의 기본적인 목적은 실제 연속공정에 있어서 열분해 반응기 거동을 모사하기 위한 전초단계로서 충분한 시료의 확보를 통하여 이 때 생성된 연로유의 체계적인 분석(비등점분포특성, 진공증류, 기체분석, 원소분석, 발열량, 비중 등)을 행함으로써 연료유 수율 및 품질을 모사하고자 하였다. 미분반응기 실험에 있어서 주 범용열가소성수지인 PE, PP 그리고 PS는 각각의 최적반응조건하에서 거의 100%에 가깝게 오일로 전환되었지만 응축수지인 PET와 그래프트공중합수지인 ABS의 오일수율은 각기 78% 및 90%로서 상대적으로 낮게 나타났다. Autoclave를 이용한 실험의 경우 혼합플라스틱을 폐유에 대하여 40wt% 혼합하여 열분해하였을 때, 80wt% 오일, 15wt% 코우크, 그리고 나머지 5wt%는 탄화수소기체(C1-C6)로 전환되었다. 진공증류(252$^{\circ}C$,2 torr) 결과, 기/액-분리도는 3으로서 이는 생성오일의 75wt%가 경질연료유(가솔린, 등유, 경유)로 회수 가능하였다.

  • PDF

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.

Study for Oil Spill Source Identification by Comprehensive Two Dimensional Gas Chromatography (2차원 가스크로마토그래프를 이용한 해상유출유 감식기법 연구)

  • Lee, Y.S.;Lee, S.J.;Kim, C.S.;Oh, H.J.;Kim, H.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • A distinctive difference of hydrocarbon in crude oil and petroleum products exists. Depending on the origin where it comes from, crude oil shows its own unique pattern which is different from petroleum products containing characteristics according to their operating process and production period. A process of mixing behavior in a tank containing residual amounts of oil draws its own pattern when analysis is conducted. The analytical process described above is named oil fingerprint method. This study investigates an effectiveness of the method for comparing data sets produced by conventional gas chromatography with mass spectrometer (GC/MS) and comprehensive two-dimensional gas chromatography (GC X GC) which is known as powerful new technology for chemical analysis.

  • PDF

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.