• Title/Summary/Keyword: 탄화수소계화재

Search Result 11, Processing Time 0.018 seconds

An Experimental Study on the Hydrocarbon Fire Resistance Test of the "H" Class Divisions (해양플랜트용 화재보호기자재의 탄화수소계(Hydrocarbon Fire) 내화성능평가)

  • Choi, Tai-Jin;Kim, You-Taek;Kim, Jou-Sik;Choi, Kyeong-Kwan;Jang, Seong-Cheol;Han, Soo-Min
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.205-205
    • /
    • 2012
  • 선박에서는 화재안전목표를 달성하기 위해 선박을 방화구획화 함으로써 발화의 지점에서 화재를 차단하여 인근지역으로 확산 되지 않도록 하고 있다. 또한 방화구획을 관통하는 파이프, 덕트 및 전선관통부 등을 통하여 유독가스 및 화염이 순식간에 이동하게 되며, 한쪽 구역에서 발생한 화재의 영향이 다른 구역으로 영향을 미치게 되므로 화염에 의한 피해를 방지하고 불길을 차단하기 위하여 관통부재에 대하여 해당 방화구획과 동등한 성능을 요구하고 있다, 선박에 적용되고 있는 방화구획의 등급은 용도에 따라 일반 상선 등에는 "C ~ A"급, 해양플랜트에는 "C ~ H"급 등급이 요구되고 있다. 그러나 현재 국내 선박 기자재 제작 기술은 "A"급에 머물러 있고 최근 국내 조선소의 해양플랜트 수주 증가와 해양플랜트로의 사업전환으로 관련기자재기업에서 "H"급 기자재 개발에 많은 관심을 가지고 개발 시도를 하고 있다. 이에 본 논문에서는 "H" 급 방화구획에 적용되고 있는 탄화수소계(Hydrocarbon Fire) 내화시험기준과 "H"급 Fire Damper의 단열두께에 따른 탄화수소계(Hydrocarbon Fire) 내화성능실험을 통한 방화 댐퍼의 비 노출면에 대한 방열성능 확보방안에 대하여 언급하고자 한다.

  • PDF

Prediction of Explosion Limits of Organic Halogenated Hydrocarbons by Using Heat of Combustions (연소열을 이용한 유기할로겐화탄화수소류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion limit (LEL) and upper explosion limit (UEL) of organic halogenated hydrocarbons were predicted by using the heat of combustion and chemical stoichiometric coefficients. The calculated explosion limits by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other organic halogenated hydrocarbons.

Estimation of Upper Explosive Limits of Paraffinic and Olefinic Hydrocarbon Compounds (파라핀족과 올레핀족 탄화수소 화합물의 폭발상한계의 추산)

  • 하동명;이수경
    • Fire Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 1996
  • An estimation methodology, based on statistics and numerical method, has been developed for estimating the upper explosive limits(UEL) of paraffinic and olefinic hydrocarbon compounds. With proposed method, the UEL has been calculated for 24 paraffinic and 10 olefinic hydrocarbon compounds. The estimated the UEL agree with the experimental values within a few percent. A comparisond with four other methods avaiable in the literature are also presented. It is hoped eventually that this method will permit estimation of the UEL with improved accuracy and broader application for other compounds.

  • PDF

잠수함의 공조

  • 김영일
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.4
    • /
    • pp.56-60
    • /
    • 2001
  • 경험에 의하면 앞에서 언급한 장비의 사용, 규율, 규제된 용제의 사용, 기름 페인트 사용의 억제, 그리고 엄격한 페인트 과정을 따르는 것에 의해 잠수함내의 탄화수소 농도를 100만분의 1 또는 2 수준으로 유지할 수 있다. 예방책으로는 세심한 관찰, 선체내로 들여오는 모든 물질의 기록 그리고 규제된 물질의 사용 시간, 장소 및 양의 제어이다. 이러한 점들은 잠수함 내부를 안전하고 건강한 환경으로 설계하기 위하여 활용될 수 있는 자료들이다. 잠수함 내의 공기질은 적외선 분광 광도계, 질량 분광계, 상자성(paramagnetics), 열전도율, 광이온화 그리고 열량 검사에 의해 분석될 수 있다. 분석된 결과는 과거의 데이터와 비교되어 활성탄충의 교체등을 포함하여 유지 관리의 자료로 활용된다. 이러한 원리를 이용한 다양한 계측기가 선체 내의 대기 상태를 분석하기 위하여 사용된다. 중앙 대기 측정기, 추적 가스 분석기, 수소 탐지기, 이동형 대기 모니터, 이동형 산소 분석기, 탄광 안전 지시계, 열량 분석관, 탐지 펌프 시험기가 사용된다. 이러한 계측기는 잠수 전 또는 후에 사용된다. 계측기는 화재 발생시 영향을 받지 않은 공간 또는 냉매가 충전되는 장소에 사용된다. 오늘날 여러 종류의 특별한 잠수함이 존재한다. 정찰 업무를 통해 세계 평화를 유지하고 특별한 임무를 수행하는 것보다 덜 복잡한 목적을 지닌 잠수함도 있다. 그러나 선원들이 안전한 내부 환경 속에서 바다 속을 항해하고 계속 그 응용 범위를 확장하기 위하여 앞에서 언급한 장비들 또는 그 변형들이 사용되어야 한다.

  • PDF

Cause Analysis in Candle Fire Investigation (양초화재 원인 감정에 관한 연구)

  • Han, Dong-Hun
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.104-109
    • /
    • 2016
  • Candle fires do not occur frequently, but can easily result in death. In this study, the thermal characteristics of candles and conditions and debris of candle fires were investigated to determine the causes of candle fires. The rates of decrease in weight of 10 candles were measured and found to be between 2.6 g/h and 6.7 g/h. Most candle fires are caused by the ignitiong of combustible materials close to them. The temperature near a candle ranges from about $200^{\circ}C$ to $400^{\circ}C$ at a distance of 1 cm and low ignition temperature materials such as papers can easily catch fire. The melting temperature of candles ranges between $50^{\circ}C$ and $70^{\circ}C$ and their major chemical components are fatty acids and normal hydrocarbons (over C20). Using pretreatment conditions involving the use of activated charcoal strips at $150^{\circ}C$ for 16 hours, the fire debris including candle residues were analyzed using a Gas-chromatograph/Mass-spectrometer (GC/MS).

Synthesis and Evaluation of New Nonflammable Cleaning Agents (난연성 세정제의 합성 및 평가에 관한 연구)

  • Kim, Ah Na;Yu, Young;Kim, Seok Chan
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.184-188
    • /
    • 2013
  • To increase flash point which is related to flammability, seven unprecedented new cleaning agents containing fluoride atoms have been invented. These newly synthesized cleaning agents's physical properties which were conducted by Korea Institute of Petroleum Management by using a standard method showed excellent values. Particularly, flash point of newly synthetic cleaning agents is more higher than that of fluoride free compound. A specimen for cleaning ability was prepared by cutting in $60mm{\times}40mm$ size of stainless steel plate. The surface of the above specimens was applied with four kinds of contaminants, such as paraffin based drawing oil, flux abietic acid, water-insoluble cutting oil, and lubricating oil. Contaminated specimens were immersed in new compounds (1-7) for 1 to 5 minutes to dissolve oil in the cleaning agent. Although the data indicate that all compounds (1-7) exhibit lower cleaning ability toward cutting oil, it is observed that in the case of the present study more than 80% of pollutants on the surface were almost removed within 5 minutes.

Development of Environmental Rubber Interphase Adhesive by use of Oligomer of Hydrocarbon (탄화수소계 올리고머를 이용한 환경친화적 고무계면 접착제 개발)

  • Jang, Byung-Man;Jang, Jeong-Seog;Park, Sung-Soo;Choi, Dug-Jai;Kim, Su-Kyung
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2001
  • Until now rubber industry field has used organic solvent base adhesive, there was always existed a fire risk, variety of quality and harmfulness of human body. To solve this problem we were developed a new adhesive that was maked by raw materials of hydrocarbon series which has the properties of nonvolatile and high flash point. Because of this new adhesive has the properties of nonvolatile and non-harmfulness to the human body, we expected to solve the problems of a fire hazard and the pollution of the environmental. Instead of the rubber binder that is used to a present adhesive, the new idea is adopted in a new type of adhesive. Nonvolatile solvent penetrated to the rubber surface and caused the swelling in rubber surface and as a result of this action, it has the self-adhesive power. In comparision with the present adhesive a new type of adhesive remarkably improved the maintenance time of adhesion and the durability of this adhesive showed similar aspect. Because it did not exhibit a drop of physical properties of rubber which was caused by swelling effect, we estimate that new type adhesive are very stable and not reacted to several rubber additives. While present adhesive appear the crack at cutting surface of curing rubber that caused by gas, new type adhesive not exist these crack.

  • PDF

Performance Experiment of H-120 Class Fire Damper for Offshore (해양플랜트용 H-120 Class 파이어 댐퍼의 성능 실험)

  • Jang, Sung Cheol;Hur, Nam-Soo;Kim, In-Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • In this paper, a fire resistance test was carried out in accordance with the change of the insulation conditions on the exposed side and unexposed side of a coaming to obtain the optimal insulation conditions for class H-120 insulation in connection with specimen1 of the preceding paper for an evaluation of the fireproof performance of fire dampers according to hydrocarbon fire conditions. In the test results, specimen2(88 mm, $171^{\circ}C$) met the class H-120 insulation conditions, but specimen3(76mm, $181^{\circ}C$) exceeded the thermal insulation acceptance criteria at 110 minutes. Therefore, specimen2(88 mm) represents the optimal insulation conditions as a possible lightweight materialas compared to specimen1. From a comparison of the test results, we concluded that the temperature increase of the coaming insulation surface was influenced by conductive heat from the bulkhead and that the coaming surface was influenced by radiant heat from the blade and coaming.

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.