• Title/Summary/Keyword: 탄소-에폭시

Search Result 200, Processing Time 0.029 seconds

Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC (PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향)

  • Lee, Jaeyoung;Lee, Wookum;Rim, Hyungryul;Joung, Gyubum;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

다차원 구조의 그래핀-산화구리 나노선 복합 필러의 열전도도 특성

  • Ha, In-Ho;Lee, Han-Seong;An, Yu-Jin;Park, Ji-Seon;Seo, Mun-Seok;Jo, Jin-U;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.433.2-433.2
    • /
    • 2014
  • 그래핀(graphene)은 탄소나노튜브(CNTs)에 비해 가격 경쟁력이 있고 우수한 광투과성과 전기 및 열 전도성을 갖고 있어 반도체 소재, 방열 소재, 접점 소재 등에 적용 가능성이 높은 재료로 주목받고 있다. 특히 모바일 디바이스의 소형화, 고집적화 등의 이슈로 인해 그래핀 소재의 방열 소재 적용을 위해 다양한 연구가 진행되고 있다. 한편 산화 구리 나노선(CuO Nanowire)은 전기 및 열전도도가 우수하고 1차원 나노 구조는 부피대비 큰 표면적, 종횡비가 커서 뛰어난 열전도 구조로서 방열 소재로 응용되기 좋은 조건을 갖고 있다. 본 연구에서는 2차원 구조의 그래핀 나노플레이트(Graphene Nanoplatelet)와 1차원 구조의 CuO NW를 하이브리드화를 통해 열전도도 향상를 개선시키고자 하였다. 소재 합성은 GNP에 Cu 무전해 도금을 진행한 후 열산화 방식을 적용하여 CuO NW를 직접 성장시키는 방식으로 진행하였다. 합성된 GNP-CuONWs 다차원 나노구조체의 열전도도 측정은 에폭시에 분산시켜 레이져 플레쉬법을 이용하였다. 미세 구조 관찰 결과, CuO NW 성장 거동은 열처리 온도 및 시간 그리고 O2 가스의 순환 환경이 주요인자로 작용하는 것을 확인하였다. 열전도도 향상은 다차원 구조의 특성으로 인해 면접촉과 선접촉이 동시에 이루어졌기 때문인 것으로 분석되었으며, 이러한 CuO NWs morphology와 열전도도 향상과의 상관 관계에 대해 논의할 것이다.

  • PDF

Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates (탄소/에폭시 복합재판의 압축강도 두께효과에 대한 연구)

  • Kong C.;Lee J.;Soutis C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.173-177
    • /
    • 2004
  • In this study, the effect of laminate thickness on the compressive behaviour of composite materials was investigated through systematic experimental work using the stacking sequences, [04]ns, [45/0/-45/90]ns and [45n/0n/-45n/90n]s (n = 2 to 8). The stacking sequence effects on failure strength of multidirectional laminates were examined. For this purpose, two different scaling techniques were used; (1) ply-level technique [45n/0n/-45n/90n]s and (2) sub laminate level technique [45/0/-45/90]ns. An apparent thickness effect existed in the lay-up with blocked plies, i.e. unidirectional specimens $([0_4]ns)$ and ply-level scaled multidirectional specimens ([45n/0n/-45n/90n]s). From the investigation of the stacking sequence effect, the strength values obtained from the sub laminate level scaled specimens were slightly higher than those obtained from the ply level scaled specimens. The measured failure strengths were compared with the predicted values

  • PDF

Design and Fabrication of Filament Wound Composite Lattice Structures (필라멘트와인딩에 의해 제조된 Lattice 구조물의 설계 및 제작 연구)

  • Doh, Young-Dae;Chung, Sang-Ki;Lee, Sang-Woo;Son, Jo-Hwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.421-427
    • /
    • 2010
  • This paper is concerned with Anisogrid composite lattice structures whose load bearing shell is formed by systems of geodesic unidirectional composite ribs made by automatic wet winding process. Lattice structures are usually made in the form of cylindrical shell and consist of systems of helical and hoop ribs fabricated by continuous filament winding from carbon and epoxy composites. Design variables of the structure which are the angle of helical ribs, ribs spacings, and cross sectional areas are determined by the method of minimization of satety factors whick is described in the paper. And, fabrication methods and actual experimental results are presented.

  • PDF

Characterization and fabrication of one component solution based CNT/epoxy binder conductive films (일액형 탄소나노튜브/에폭시 바인더 코팅액을 이용한 전도성 필름 제조 및 특성 분석)

  • Han, Joong-Tark;Woo, Jong-Seok;Kim, Sun-Young;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.455-456
    • /
    • 2007
  • Optically transparent, highly conductive coating have been major theme of thin film science efforts for some years. In this work, t-MWNT(thin Multi-walled Carbon Nanotubes) are acid treated, then the stable dispersion of t-MWNTs in polar solvent such as alcohols, was achieved by sonication. The transparent conducting films are prepared using the one component solution of t-MWNT/epoxy binder via spray coating on glass substrate. The characterization of acid treated t-MWNTs was performed by Raman spectrometer. The opto-electrical properties of conducting films are analyzed by the binder concentration, and the effect of co-solvent on the compatibility and dispersibility of one component t-MWNT/epoxy binder solutions are discussed.

  • PDF

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Effect of Water Absorption on the Tensile Properties of Carbon-Glass/Epoxy Hybrid Composite in Low Temperature (탄소-유리/에폭시 하이브리드 복합재의 저온 인장 특성에 미치는 수분의 영향)

  • Jung, Hana;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.729-734
    • /
    • 2012
  • This study investigated the effect of water absorption on the tensile properties of carbon-glass/epoxy hybrid composites at room temperature and $-30^{\circ}C$. To investigate the effect of the position of glass fabric in the hybrid composite on the tensile properties, the stacking pattern of the fiber fabrics for reinforcing was created in three different ways: (a) glass fabrics sandwiched between carbon fabrics, (b) carbon fabrics sandwiched between glass fabrics and (c) alternative layers of carbon and glass fabrics. They were manufactured by a vacuum-assisted resin transfer molding (VARTM) process. The results showed that there was surprisingly little difference in tensile strength at the two different temperatures with dry and wet conditions. However, the water absorption into the hybrid system affected the tensile properties of the hybrid composites at RT and $-30^{\circ}C$. When the glass fabrics were at the outermost layers, the hybrid composite had the lowest tensile properties. This is attributed to the fact that the composite had a relatively high water absorption rate.