• Title/Summary/Keyword: 탄소 포집 및 저장

Search Result 30, Processing Time 0.022 seconds

Patent Trend Analysis of Carbon Capture Storage Utilization (이산화탄소 포집·저장 기술 및 활용에 대한 디자인 고찰)

  • Yoon, June;Jin-Oh, Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • In order to achieve carbon neutrality, it is necessary to commercialize and popularize carbon dioxide capture technology, so the purpose of this study is to put forward the design of public facilities suitable for public environment. In the design direction of public facilities for carbon capture and environmental purification, the application of carbon capture technology in air, the application of carbon capture and adsorption materials, and carbon reduction recycling are selected for development. In order to achieve carbon neutrality, this study develops a new concept of public facility design which is different from the existing public facilities in public space. From this point of view, it has great enlightenment significance. Public facilities adopting carbon-neutral technology are environmentally friendly public facilities that conform to the times, and can be installed in parks, roads and other spaces. With the rest of citizens and the role of communities, it is expected to contribute to popularization and activation.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Achieving Carbon Neutrality: Technology Innovations and Research Needs in the Division of Groundwater and Soil (탄소중립 달성을 위한 지하수토양분야 혁신기술 및 선도연구 소개)

  • Jongbok Choi;Younggyu Son;Young-Soo Han;Man Jae Kwon;Seunghak Lee;Kitae Baek;Yongseok Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.spc
    • /
    • pp.40-54
    • /
    • 2023
  • 산업혁명 이후 화석연료의 광범위한 사용, 삼림 벌채, 토지사용의 변화 등과 같은 인위적 활동은 대기 중 온실가스(GHGs, greenhouse gases) 농도를 지속적으로 증가시켜 지구의 기후위기를 유발하였다. 우리나라의 경우 최근 30년 사이 평균 온도가 1.4℃ 상승하였으며, 국제사회의 일원으로 책임을 다하기 위해 2016년 11월 3일 파리협정을 비준하였다. 이에 파리협정의 목표인 산업화 이전 대비 지구 평균온도 상승을 2℃ 아래, 가능한 1.5℃ 아래로 억제하기 위해 2050년까지 CO2 순배출량을 0으로 만들어야 하며, 이를 위해 다양한 정책 마련과 함께 경제 및 사회 전반에 걸쳐 많은 노력이 경주되고 있는 실정이다. 탄소중립을 달성하기 위해서는 첫 번째로 GHGs 배출을 줄이고, 두번째로 대기에서 CO2 포집을 촉진하기 위해 현재 가동되는 다양한 산업분야의 생산 시스템을 개혁하는 것이 가장 중요한 과제로 고려되고 있다. 그동안 지하수토양 관련 연구분야에서는 지속가능성(sustainability), 복원성(resilience), 녹색성장(green growth) 등과 같은 사회적 요구에 부응하여, 녹색정화(green remediation), 자연 저감(natural attenuation), 탄소포집저장(carbon capture and sequestration), 지열발전등의 기술이 초기단계로 개발이 되고 연구가 되어 왔다. 이러한 기존 연구들은 탄소중립2050의 달성을 위해 고도화되어야하며, 추가적으로 자연 및 인위기원 탄소배출 연구, 토양의 역할을 고려한 저탄소 토지이용 기술, 광물탄산화 등의 연구 및 기술개발이 필요하다고 판단된다. 본 논문에서는 탄소중립2050의 간단한 내용과 함께, 이를 달성하기 위한 지하수토양 분야의 혁신기술 및 선도연구를 소개하였다.

Offshore CCS Plant Technology for 3Mt-CO2 Storage (연간 300만톤급 온실가스 감축을 위한 해양 CCS 플랜트 기술)

  • Huh, Cheol;Kang, Seong-Gil;Lee, Keum-Suk;Park, Young-Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes it possible not only to reduce a huge amount of carbon dioxide directly from coal power plant but also to maintain the carbon concentrated-energy infrastructure. The objective of the present paper is to review and introduce R&D progress and large scale demonstration plan focused on marine geological storage in Republic of Korea.

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Strategic Planning of Carbon Capture & Storage (CCS) Infrastructure Considering the Uncertainty in the Operating Cost and Carbon Tax (불확실한 운영비용과 탄소세를 고려한 CCS 기반시설의 전략적 계획)

  • Han, Jee-Hoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • A carbon capture and storage (CCS) plays a very important role to reduce $CO_2$ dramatically in $CO_2$ emission sources which are distributed throughout various areas. Numerous research works have been undertaken to analyze the techno-economic feasibility of planning the CCS infrastructure. However, uncertainties such as $CO_2$ emissions, $CO_2$ reduction costs, and carbon taxes may exist in various impact factors of the CCS infrastructure. However, few research works have adopted these uncertainties in designing the CCS infrastructure. In this study, a two-stage stochastic programming model is developed for planning the CCS infrastructure under uncertain operating costs and carbon taxes. It can help determine where and how much $CO_2$ to capture, store or transport for the purpose of minimizing the total annual $CO_2$ reduction cost in handling the uncertainties while meeting the $CO_2$ mitigation target. The capability of the proposed model to provide correct decisions despite changing the operating costs and carbon taxes is tested by applying it to a real case study based on Korea. The results will help to determine planning of a CCS infrastructure under uncertain environments.

Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies (이산화탄소 포집 및 지중저장(CCS) 기술의 청정개발체제(CDM)로의 수용 여부에 대한 정책적 고찰: 지중저장과 관련된 이슈 및 대응방안)

  • Huh, Cheol;Kang, Seong-Gil;Ju, Hyun-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • Carbon dioxide Capture and Storage (CCS) is one of the key players in greenhouse gas (GHG) reduction portfolio for mitigating climate change. CCS makes simultaneously it possible not only to reduce a huge amount of carbon dioxide directly from the emission sources (e.g., coal power plant) but also to maintain the carbon concentrated-energy and/or industry infrastructure. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) is dealing the agenda for considering the possibility of including CCS project as one of Clean Development Mechanism (CDM) projects. Despite its usefulness, however, there are the controversies in including CCS as the CDM project, whose issues include i) non-permanence, including long-term permanence, ii) measuring, reporting and verification (MRV), iii) environmental impacts, iv) project activity boundaries, v) international law, vi) liability, vii) the potential for perverse outcomes, viii) safety, and ix) insurance coverage and compensation for damages caused due to seepage or leakage. In this paper, those issues in considering CCS as CDM are summarized and analyzed in order to suggest some considerations to policy makers in realizing the CCS project in Korea in the future.

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority (Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Soo-Hee;Kim, Kyoung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • Global warming causes the climate change and makes severe damage to ecosystem and civilization Carbon dioxide greatly contributes to global warming, thus many studies have been conducted to estimate the forest biomass carbon stock as an important carbon storage. However, more studies are required for the selection and use of technique and remotely sensed data suitable for the carbon stock estimation in Korea In this study, the aboveground forest biomass carbon stocks of Danyang-Gun in South Korea was estimated using $k$NN($k$-Nearest Neighbor) algorithm and regression model, then the results were compared. The Landsat TM and 5th NFI(National Forest Inventory) data were prepared, and ratio images, which are effective in topographic effect correction and distinction of forest biomass, were also used. Consequently, it was found that $k$NN algorithm was better than regression model to estimate the forest carbon stocks in Danyang-Gun, and there was no significant improvement in terms of accuracy for the use of ratio images.