• Title/Summary/Keyword: 탄소중립 평가

Search Result 81, Processing Time 0.027 seconds

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

A Study on Residents' Acceptance of Unutilized Heat in District Heating (미활용 열에너지의 집단에너지 주민 수용성에 관한 연구)

  • Doo Hwan Won;Saesin Oh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.191-215
    • /
    • 2023
  • This study focuses on evaluating and comparing residents' acceptance of unutilized heat such as hydrothermal energy and waste heat from waste incineration and data centers in the case that they are used as district heat sources. This is because securing residents' acceptance is significantly important in order for unutilized heat to be considered as a heat source of district heating and cooling to achieve neutrality in the heating and cooling sector. A survey of heating consumers' perception on unutilized heat energy is conducted and a conjoint model is used to analyze the willingness to pay of heating consumers on incineration heat, water heat, and data center waste heat and to compare them with existing gas heat sources. As a result of the analysis, it is confirmed that district heating using hydrothermal energy and data center waste heat is preferred to district heating from heat from a natural gas plant or waste incineration.

Study on Improving Environmental Impact Assessment of Carbon Sink in the Greenhouse Gas Evaluation Criteria for Railway Construction Projects for Carbon Neutrality (탄소 중립을 위한 철도 건설 사업 온실가스 평가항목의 탄소흡수원 분야 환경영향평가 개선 방안 연구)

  • Hwang, Jin-hoo;Namuun, Tuvshinjargal;Won, Joo-hee;Kim, Min-jeong;Park, Da-hye;Jeon, Seong-woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.3
    • /
    • pp.43-55
    • /
    • 2023
  • The railway project is an essential green transportation tool that is considered suitable for the domestic and foreign policy direction of carbon neutrality, but there are some limitations, such as damaging important carbon absorption sources during construction. This study analyzed the environmental impact assessment related to carbon absorption sources of greenhouse gas evaluation items conducted during the railway project, and limitations and implications were derived. The analysis of environmental impact assessment guidelines related to railway projects and carbon absorption sources dealt with prediction and reduction methods related to carbon absorption sources, but guidelines, including environmentally friendly railway construction guidelines, lacked descriptions. Since the greenhouse gas environmental impact assessment, 83 railway project environmental impact assessments have been reviewed, but in some cases, carbon absorption-related predictions have not been implemented, or carbon absorption-related reduction measures have been insufficient. In addition, there were cases where there was a limit to calculating emissions and reduction or where the reduction value was insignificant compared to emissions. In order to supplement the environmental impact assessment in the field of carbon absorption sources related to railway construction projects, alternatives such as quantitative emission and low reduction calculation, review of the no net loss system using the total environmental resource system, and linkage with climate change impact assessment are needed.

A Study on the Safety of Liquefied Hydrogen Refueling Station through Quantitative Risk Assessment (정량적 위험성평가를 통한 액화수소충전소 안전성 고찰)

  • Woo-Il Park;Seung-Kyu Kang;In-Woo Lee;Yun-Young Yang;Chul-Hee Yu
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • In addition to analyzing the hydrogen economy trends of the international community (Korea, the United States, Europe, Japan, etc.), which is being promoted to realize a carbon-neutral society, this study compared and analyzed the differences between the gaseous hydrogen refueling station, which is a key hydrogen-using facility close to the people, and a liquefied hydrogen refueling station that is scheduled to be built in the future. In addition, SAFETI, a quantitative risk assessment program, was used to analyze the safety of liquefied hydrogen refueling stations and In consideration of the individual and societal risks and the ranking of risks by facility, which are conditional allowable areas, a plan to improve safety such as facility layout was proposed

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

Classification of Wind Corridor for Utilizing Heat Deficit of the Cold-Air Layer - A Case Study of the Daegu Metropolitan City - (냉각에너지를 활용한 바람길 구성요소 분류 - 대구광역시를 사례로 -)

  • Sung, Uk-Je;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.70-83
    • /
    • 2023
  • Recently, the Korea Forest Service has implemented a planning project about wind corridor forests as a response measure to climate change. Based on this, research on wind corridors has been underway. For the creation of wind corridor forests, a preliminary evaluation of the wind corridor function is necessary. However, currently, there is no evaluation index to directly evaluate and spatially distinguish the types of wind corridors, and analysis is being performed based on indirect indicators. Therefore, this study proposed a method to evaluate and classify wind corridors by utilizing heat deficit analysis as an evaluation index for cold air generation. Heat deficit was analyzed using a cold air analysis model called Kaltluftabflussmodell_21 (KLAM_21). According to the results of the simulation analysis, the wind path was functionally classified. The top 5% were classified as cold-air generating Areas (CGA), and the bottom 5% as cold-air vulnerable Areas (CVA). In addition, the cold-air flowing Areas (CFA) were classified by identifying the flow of cold air moving from the cold air generation area. It is expected that the methodology of this study can be utilized as an evaluation method for the effectiveness of wind corridors. It is also anticipated to be used as an evaluation index to be presented in the selection of wind corridor forest sites.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Economic Feasibility of Forest Biomass Thermal Energy Facility Using Real Option Approach (실물옵션법을 이용한 산림 바이오매스 열공급 시설의 투자 분석)

  • An, Hyunjin;Min, Kyungtaek
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • The energy use of forest biomass is crucial to deal with climate change and achieve the carbon-neutral goal. This study aims to analyze the economic feasibility of forest biomass thermal energy facilities and calculate the optimal subsidy level of heat supply to ensure continued operation of the facilities. To achieve this aim, the net present value approach (NPV) and call option price model are adopted considering wood chip price volatilities. The Forest Energy Self-Sufficient Village Project financed by Korea Forest Service is considered as the research case study. In our analysis, when 50% of the initial investment is given to the subsidies and RECs are applied to only power generation, NPV and IRR are both negative and the investment value using the real option model is also zero. We concluded that some heat subsidies should be acknowledged to keep the facilities operating. Besides, the simulation results reveal reliable economic values when the heating subsidy is priced at KRW 0.0248 per kcal.

Carbon neutrality potentials in local governments under different forest management - The Study Case of Paju and Goseong - (산림관리에 따른 기초지자체 규모의 탄소중립 가능성 평가 - 파주시와 고성군을 대상으로 -)

  • Lee, Do-Hyung;Choe, Hye-Yeong;Kim, Joo-Young;Cheong, Yu-Kyong;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.17-28
    • /
    • 2022
  • We evaluated the effect of CO2 offsetting by estimating changes in carbon uptake under various forest management scenarios and proposed forest management strategies to achieve carbon neutrality. Paju and Goseong, which have relatively large forest areas but different industrial characteristics, were selected for the study sites. The current state of forest distribution was analyzed using forest type maps and aerial photographs, and the amount of carbon uptake was calculated using the equation presented by the IPCC Guidelines for National Greenhouse Gas Inventories and the national emission/absorption coefficients from the Korea National Greenhouse Gas Inventory Report. As of 2015, the forest carbon absorption in Paju and Goseong was 49,931 t/yr and 94,225 t/yr, respectively, and the annual carbon absorption per unit area was 2.28 t/ha/yr and 2.16 t/ha/yr. Under the forest management scenarios, the annual maximum carbon absorption per unit area is estimated to increase to 5.68 t/ha/yr in Paju and 4.22 t/ha/yr in Goseong, and this absorption would increase further if urban forests were additionally created. Even if the current forests of Paju and Goseong are maintained as they are, emissions from electricity use can be sufficiently offset. However, by applying appropriate forest management strategies, emissions from sectors other than electricity use could be offset. This study can be applied to the establishment of carbon absorption strategies in the forest sector to achieve carbon neutrality.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.