• Title/Summary/Keyword: 탄소인증

Search Result 71, Processing Time 0.021 seconds

Research on the Solution of Non-permanence Problem of Forest Carbon Offset Project Focused on the Introduction of Buffer System (산림 탄소상쇄 사업의 비영속성 처리 방안 -버퍼 제도의 도입을 중심으로-)

  • Cha, Junhee;Lee, Jong-Hak;Han, Kijoo;Bae, Jae Soo;Seol, Mihyun;Joo, Rin-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.83-90
    • /
    • 2012
  • Forests as carbon sinks and sources, play an important role in mitigating global climate change. Nonpermanence problem of forest carbon offset projects should be addressed practically and properly for obtaining credible forest carbon credits. This study aims to analyze major non-permanence approaches and their applicability for Korean forest carbon offset projects. Introduction of the buffer system, one of the most generally used non-permanence approaches, should be considered first for domestic forest carbon offset schemes. From the research survey, experts preferred the buffer system to other approaches such as forest certification, conservation easement, and longer conservation period. Standard development including a buffer system with a risk assessment tool is required to assure project participation and permanence of carbon credits.

Investigation of Korean Forest Carbon Offset Program : Current Status and Cognition of Program Participants (산림탄소상쇄제도의 사업참여자 인식 및 현황 분석)

  • Sa, Yejin;Woo, Heesung;Kim, Joonsoon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.165-176
    • /
    • 2022
  • To raise awareness of carbon reduction in climate change, the Korea Forest Service has developed and adopted a forest carbon offset program, which aims to reduce carbon levels based on forest management. However, to maintain the forest carbon offset program, challenges such as the lack of a forest monitoring system to manage and maintain the program, must be faced. In this context, we investigated the limitations of conducting forest carbon offset programs using a number of interview techniques, including in-depth interview and questionnaire survey methods. The questionnaire surveys were developed based on the results of a literature review along with a preinterview and in-depth survey of the people in charge of the forest carbon offset program. The Irving Seidman technique was adopted for the in-depth interviews. Additionally, descriptive and frequency analyses were conducted to identify the characteristics of perception. Lastly, logistic regression was used to identify the limiting factors that affect the willingness to perform forest carbon offset monitoring activity. Results showed that the project managers or people in charge of the forest carbon offset program lacked expertise in forest carbon offset programs, which negatively affected their willingness to perform monitoring activity. Additionally, the study revealed a number of limiting factors that hindered the monitoring of forest carbon offset projects. Improving understanding using the approaches presented in this study may contribute to increasing the benefits associated with the forest carbon offset program in South Korea.

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production (벼 생산 단계에서 탄소발생량과 감축요소 평가)

  • Lee, Deog Bae;Jung, Soon Chul;So, Kyu Ho;Jeong, Jae Woo;Jung, Hyun Chul;Kim, Gun Yeob;Shim, Gyo Moon
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.129-142
    • /
    • 2012
  • This study was carried out to evaluate carbon footprint during unhulled rice production and to compare mitigation technologies of methane, main carbon source during rice production, Carbon footprint of unhulled rice was a sum of $CO_2$ emission of agri-materials manufacture, rice cultivation and waste treatment. It was emitted 1.40 kg $CO_2$ during unhulled rice production, its distribution was 71.1% by $CH_4$ emission of rice cultivation, 11.8% of $N_2O$ emission by nitrogen application and 7.6% of complex fertilizer manufacture. $CH_4$ emission could be mitigated by some technologies; cultivation of the early maturing rice variety emitted lower by 44.4% than the mid maturing variety, intermittent drainage of submerged water by 43.8% than the continuous flooding condition, direct seeding by 32.0% than transplanting cultivation, no-ploughing by 20.9% than ploughing cultivation. It means that LCA on Global Warming Potential and the statistical data on innovated technical practice are key tools to systemize Measurable-Reportable-Verifiable (MRV) system for carbon footprint and carbon emission trade in the farm base.

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

Application of Remote Sensing Technology for Developing REDD+ Monitoring Systems (REDD+ 모니터링 시스템 구축을 위한 원격탐사기술의 활용방안)

  • Park, Taejin;Lee, Woo-Kyun;Jung, Raesun;Kim, Moon-Il;Kwon, Tae-Hyub
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.315-326
    • /
    • 2011
  • In recent years, domestic and international interests focus on climate change, and importance of forest as carbon sink have been also increased. Particularly REDD+ mechanism expanded from REDD (Reduced Emissions from Deforestation and Degradation) is expected to perform a new mechanism for reducing greenhouse gas in post 2012. To conduct this mechanism, countries which try to get a carbon credit have to certify effectiveness of their activities by MRV (Measuring, Reporting and Verification) system. This study analyzed the approaches for detecting land cover change and estimating carbon stock by remote sensing technology which is considered as the effective method to develop MRV system. The most appropriate remote sensing for detection of land cover change is optical medium resolution sensors and satellite SAR (Synthetic Aperture Radar) according to cost efficiency and uncertainty assessment. In case of estimating carbon stock, integration of low uncertainty techniques, airborne LiDAR (Light Detection and Ranging), SAR, and cost efficient techniques, optical medium resolution sensors and satellite SAR, could be more appropriate. However, due to absence of certificate authority, guideline, and standard of uncertainty, we should pay continuously our attention on international information flow and establish appropriate methods. Moreover, to apply monitoring system to developing countries, close collaboration and monitoring method reflected characteristics of each countries should be considered.

New Requirements of Environmental Standard for Aircraft Engine Exhaust Emissions (환경규제 강화에 따른 항공기 배기가스 배출기준 개정 방안 연구)

  • Noh, Ji-Sub;Kim, Kyeong-Su;Nam, Young-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.7-12
    • /
    • 2020
  • In this paper the new revision of Korean Airworthiness Standards (KAS) - Emissions was proposed for enforced environmental standards. The Aircraft Engine Fuel Venting and Exhaust Emissions Requirements have been only defined for smoke, HC, CO and NOx as management items in previous KAS. However, this standard has not covered the current situation that International Civil Aviation Organization (ICAO) and United States Environmental Protection Agency (EPA) enforced environmental regulations, such as emissions trading system, limitation of CO2 emissions and restriction of exhaust gas. In order to overcome these outdated situations, we presented the new requirements for aircraft exhaust gas emissions standard of Korea based on the latest standards of United States, Europe and other countries.

Renewing Tonnage Taxation of Shipping in Linkage to Greenship Certification Scheme (친환경선박 인증과 연계한 톤세제도 합리화 방안)

  • Junkeon Ahn;Jieun Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.86-94
    • /
    • 2023
  • Tonnage taxation has contributed to developing the Korean maritime industry through tax relief for shipping companies. The current tonnage taxation relies on the net tonnage as an earning-capacity indicator in a merchant ship. Although the tonnage tax accords with horizontal equity, it does not match vertical equity because of the different taxable capacities of an individual company. Nowadays, maritime transport uses a dedicated vessel, and each shipping freight embeds a different value of time. It means the tonnage taxation regime should consider the added value of each shipping freight. Meanwhile, as the environmental regulations led by the International Maritime Organization are being strengthened, the Korean merchant fleet must be eco-friendly soon after. This study explores the alternative to renewing tonnage taxation by utilizing the Greenship certification and considering the ability-to-pay principle. Because the Greenship certification scheme encourages shipping decarbonization, maritime transport by a certified ocean-going vessel comes to be treated as an activity for the green economy. Special taxation for the green economy may contribute to shipping sustainability and market competitiveness.

A Study on the Comparative Analysis of Building Life Cycle Carbon Emission Assessment in Korea and China (한국과 중국의 건축물 전과정 탄소배출량 평가 비교분석에 관한 연구)

  • Zheng, Peng-Fei;Tae, Sung-Ho;Lim, Hyo-Jin;Kim, Hyeon-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.155-156
    • /
    • 2023
  • This study aims to analyze the factors that cause differences in the evaluation results of the life cycle carbon emissions assessment of buildings in both Korea and China as part of the methodology research of building life cycle assessment for Chinese buildings to promote building life cycle assessment in China. Specifically, it examines the building LCA standards of Korea and the standard for building carbon emission calculation in China as mentioned in the green building certification systems of both countries. Based on the investigation of the two standards, the life cycle carbon emissions of the evaluation target building were evaluated using the building life cycle assessment methods of both countries, and the influencing factors that cause differences in the life cycle carbon emission assessment results of the two countries were analyzed.

  • PDF