• Title/Summary/Keyword: 탄소섬유 에폭시 복합재료

Search Result 164, Processing Time 0.029 seconds

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams (대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성)

  • 정광섭;이대길;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.

Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites (불연속 탄소섬유-에폭시 복합재의 발열성능 평가)

  • Kim, Myungsoo;Kong, Kyungil;Kim, Nari;Park, Hyung Wook;Park, Ounyoung;Park, Young-Bin;Jung, Mooyoung;Lee, Sang Hwan;Kim, Su Gi
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2013
  • This study explores the resistive heating characteristics of discontinuous carbon fiber (CF)-epoxy composites. Test samples including 1, 3, and 5 wt.% CF were fabricated using sonication and cast molding processes. For heating performance characterization, DC currents were applied to the composite samples, and surface temperatures were evaluated visually and quantitatively using an infrared camera. To estimate the thermal performance of composites and verify the experimental results, finite element analyses were performed. The resistive heating mechanism was investigated in connection with CF loading and applied voltages. Resistive heating efficiency increased proportionately with CF concentration and applied voltage. To obtain homogeneous temperature distribution of the samples, high degree of CF dispersion is required.

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites (양극산화 처리에 따른 탄소섬유 표면의 페놀릭 하이드록실 관능기 비율의 증가가 에폭시기지 복합재료의 기계적 계면결합 특성에 미치는 영향)

  • Kim, Dong-Kyu;Kim, Kwan-Woo;Han, Woong;Song, Bhumkeun;Oh, Sang-Yub;Bang, Yun Hyuk;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.472-477
    • /
    • 2016
  • We studied the effects of anodic oxidation treatments of carbon fibers on interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites with various current densities. The surface of treated carbon fibers was characterized by atomic force microscope (AFM), field emission-scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The interlaminar shear strength (ILSS) of the composites was determined by a short beam shear test. This result showed that both the roughness and oxygen group of the carbon fibers surface increased in proportion to the current density. After anodic-oxidation-treated, the ILSS also increased as a function of the current density. In addition, the proportional relationship between ILSS and phenolic hydroxyl group was confirmed. The ILSS of the CF-2.0 sample increased by 4% compared to that of the CF-AS sample, because the anodic oxidation treatment increased the oxygen group and roughness on the carbon fibers surface, which leading to the improvement of the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites. Among these, the phenolic hydroxyl group which has the proportional relationship with ILSS is found to be the most important factor for improving the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites.

A Study on the AE Characteristics of the Carbon Fiber Composite Material (탄소섬유 복합재료의 AE 특성에 관한 연구)

  • 옹장우;이영신;심봉식;지용관;주영상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.105-114
    • /
    • 1989
  • This study was carried out to measure the mechanical properties and the acoustic emission (AE) characteristics of the carbon fiber reinforced composites of several types of the stacking sequence. AE signals were detected during the tensile tests. The number of ringdown counts, total ringdown counts were plotted together with the load-displacement curves. The tensile load-displacement behavior of specimen is compared and discussed based on the measured AE properties in relation to the failure mechanism. With the increase of load, AE signals increased. This showed that failure had being propagated by matrix deformation and cracking, delamination, fiber debonding and breakage. Felicity ratio has been obtained by observation of ;the Kaiser effect according to the variation of load ratio. The reloading tests showed that the felicity ratio decreased obviously when the load ratio or damage increased. These AE characteristics are hopeful to be employed as the criteria to evaluate the failure processes of composites.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

Effect of Carbon Fiber on Electrical and Mechanical Properties of Epoxy/Graphite Bipolar Plate (에폭시/Graphite계 Bipolar Plate의 전기적, 물리적 성질에 미치는 Carbon Fiber의 영향)

  • Choi, Bum-Choul;Lee, J.J.;Lee, Jae-Young;Park, Yunkyeong;Lee, Hong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • 고분자 전해질 연료전지 (PEMFC)의 핵심 부품 중의 하나인 Bipolar Plate (분리판)을 제조하기 위해서 고분자/그라파이트 복합재료를 사용하였다. 고분자 매트릭스로는 경화시 뛰어난 화학적, 기계적 특성을 갖는 에폭시를 채택하였고, 전기 전도성을 부여하기 위해 그라파이트를 도입하였으며, 에폭시 수지의 내충격성을 향상시키기 위해서 Carbon Fiber를 채택하였다. 에폭시 분말과 그라파이트 분말, 그리고 1cm 정도의 길이를 갖는 Carbon Fiber을 믹서에 넣고 균일하게 혼합하였다. 이 혼합물을 이형제 처리된 몰드에 주입하고, Hot Press를 사용하여 가열, 가압 ($150^{\circ}C$, 4 ton/$cm^2$, 2시간)하면서 경화시켰다. 일정 비율로 고정된 에폭시/그라파이트 계에 Carbon Filber의 혼합 비율을 변화시키면서 전기적, 물리적 성질의 변화를 연구하였다.

  • PDF

Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials (탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향)

  • Hwang, Jin-Ho;Hwang, Woon-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.