• Title/Summary/Keyword: 탄소나노튜브 용액

Search Result 74, Processing Time 0.029 seconds

Synthesis of High-Quality Single-Walled Carbon Nanotube Fibers by Vertical CVD (수직 가열로를 이용한 고순도 단일벽 탄소나노튜브 섬유의 합성)

  • Kim, Tae-Min;Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Choi, Won-Chel;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.377-384
    • /
    • 2010
  • Many routes have been developed for the synthesis of signle-walled carbon nanotubes (SWCNTs). We spun fibers of SWCNTs directly from vertical furnace using a liquid source of carbon and an iron-contained molecule. The solution was prepared by ethanol as a carbon source, in which ferrocene as a catalyst, thiophene were dissolved. It was then injected from the top of the furnace into hot zone with hydrogen as a carrier gas. We successfully synthesized high-quality SWCNTs by adjusting the various experimental conditions, such as concentration of ferrocene, solution injection rate, concentration of thiophene, and hydrogen flow rate. Measurement of Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were carried out to find the optimized conditions. The synthesized SWCNTs (1.16~1.64 nm) appeared a bundle structure and well-aligned parallel to the direction of furnace. These results also provide an simple way for high-quality SWCNTs mass production and fabricating direct spining SWCNTs fiber. It will allow one-step production of SWCNTs fiber with potentially excellent properties and wide-range applications.

Fabrication Process of Single-walled Carbon Nanotube Sensors Aligned by a Simple Self-assembly Technique (간단한 자기 조립 기법으로 배열된 단일벽 탄소 나노 튜브 센서의 제작공정)

  • Kim, Kyeong-Heon;Kim, Sun-Ho;Byun, Young-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.28-34
    • /
    • 2011
  • In previous reports, we investigated a selective assembly method of fabricating single-walled carbon nanotubes (SWCNTs) on a silicon-dioxide ($SiO_2$) surface by using only a photolithographic process. In this paper, we have fabricated field effect transistors (FETs) with SWCNT channels by using the technique mentioned above. Also, we have electrically measured gating effects of these FETs under different source-drain voltages ($V_{SD}$). These FETs have been fabricated for sensor applications. Photoresist (PR) patterns have been made on a $SiO_2$-grown silicon (Si) substrate by using a photolithographic process. This PR-patterned substrate have been dipped into a SWCNT solution dispersed in dichlorobenzene (DCB). These PR patterns have been removed by using aceton. As a result, a selectively-assembled SWCNT channels in FET arrays have been obtained between source and drain electrodes. Finally, we have successfully fabricated 4 FET arrays based on SWCNT-channels by using our simple self-assembly technique.

Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior (용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동)

  • Teng, Dayong;Shin, Young Hwan;Kwon, Younghwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.421-426
    • /
    • 2008
  • Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS's with 3 different molecular weights (${\bar{M}}_n$ = 101500 g/mole for PS-1, ${\bar{M}}_n$ = 89900 g/mole for PS-2, and ${\bar{M}}_n$ = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at $210^{\circ}C$ and $180^{\circ}C$, of above and below the critical flow temperature ($T_{cf}{\sim}195^{\circ}C$) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at $210^{\circ}C$ and $180^{\circ}C$. Only the composite at $210^{\circ}C$ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.

Gas sensing characteristics of SWNT(single walled carbon nanotube) sheet (탄소나노튜브의 가스 감응 특성)

  • 김민주;이상태;전희권;허증수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.136-136
    • /
    • 2003
  • 카본나노튜브는 상용되는 기존의 센서에 비해 표면적이 넓어 감도가 놀고 응답속도가 빠르다. 또한 나노 스케일의 크기를 가지므로 고직접화를 실현할 수 있으며 기능복구성이 뛰어나 상온동작을 통한 저전력화가 가능하다. 본 실험에서는 아크방전법으로 합성한 카본나노튜브를 가스센서로 제작하여 상온에서 NH$_3$, NO 가스와의 반응 특성을 평가하였다. 또한 origin soot와 이를 정제한 purified CNT를 SEM(주사전자현미경), TEM(투과전자현미경), Raman scattering spectroscopy(라만 산란 분광기)를 통해 재료적 특성을 조사하고 이를 가스 감응 곡선과 연관하여 비교, 분석하였다. 전극에 CNT막을 형성시키기 위해 3g의 N,N dimethylformamide 용액에 CNT 10mg을 분산시킨 후 2시간동안 초음파 처리하였다. 이 용액을 mask를 이용해 전극 위에 막을 형성시킨 후 20$0^{\circ}C$에서 열처리하였다. 이렇게 제조된 origin soot와 purified CNT센서는 flow system을 이용하여 측정하였고 $N_2$분위기 하에서 센서를 안정화시킨 후 측정가스와의 반응을 살펴보았다 센서의 반응속도, 회복속도, 감도 등의 측정결과 origin soot는 NH$_3$ 25ppm에서 20%, purified CNT는 1%의 감도를 보여 20배 높은 감도를 보았다. NO 25ppm의 경우에도 origin soot가 8%, purified CNT는 0.8%의 감도를 보여 10배 높은 감도를 보였다. 이는 탄소입자가 많은 origin soot가 purified CNT 보다 표면적이 넓어 보다 많은 가스 흡착 싸이트를 가지기 때문이다. 하지만 origin soot는 반응시간과 회복속도가 Purified CNT 보다 2배 이상 느려 표면적 증가에 따른 가스 흡착과 탈착 능력이 떨어짐을 알 수 있었다. 또한 CNT와 가스사이의 전하 이동 방향에 따라 NH$_3$는 양의 감도를 NO는 음의 감도를 보였다 이는 전하의 이동 방향에 따라 전하와 캐리어 사이의 결합 및 해리가 일어나게 되고 결국 카본나노튜브 내의 캐리어 수를 증감시킴에 따라 나타나는 현상이다. 이러한 가스의 감도는 농도에 따라 증가하였으며 origin soot를 이용하여 1ppm이하의 NH$_3$ 가스를 검출할 수 있었다.

  • PDF

CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible (고강도, 고강성, 그리고 유연한 탄소나노튜브 버키페이퍼-폴리우레탄 나노복합체)

  • Ha, Yu-Mi;Lim, Da-un;Kim, Yoong Ahm;Jung, Yong Chae
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.161-166
    • /
    • 2016
  • Carbon nanotube buckypaper (CNTs-BP)/thermoplastic polyurethane (PU) elastomer composites were successfully fabricated. The CNTs-BP/PU nanocomposites exhibited simultaneous improvements in both tensile modulus and strength by 1360 and 430%, respectively, as compared to pure PU. Possible reinforcing mechanisms were evidenced by SEM analyses and tensile tests. The CNTs-BP/PU nanocomposites can be potentially used as an inter-reinforcing agent in ultra-lightweight, high-strength aircraft, carbon-fiber-reinforced plastics, etc.

Study of Polycarbonate/MWNT Electrospun Nanofiber and Its Multi-Filament Application (전기방사에 의한 카본나노튜브/폴리카보네이트 나노섬유와 복합필라멘트 특성에 관한 연구)

  • Choi, Jae-Won;Lee, Kwang-Hoon;Hwang, Seok-Ho;Kim, Jeong-Yeol;Lee, Sang-Won;Huh, Wansoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.413-420
    • /
    • 2008
  • Over the past decade, there have been significant advancement in the field of electrospinning area. This study has focused on preparing yarn using polycarbonate (PC) nanofibers including modified multi-walled carbon nanotube (mMWNT) by solution electrospinning process using the mixture of solvents consisting of tretrahydronfuran (THF) and N,N-dimethylformamide (DMF). In order to enhance the dispersion, MWNT was chemically modified. TEM analysis for the prepared PC/mMWNT nanofibers reveals that mMWNT was well-dispersed into the PC nanofiber matrix. Also with increasing contents of mMWNT, thermal stability of PC/mMWNT nanofibers was improved than that of PC nanofibers. Moreover when 3 to 5 wt% of mMWNT was added, the nanofibers showed good electrical properties expecting antistatic effect, ranging 109.1~109.5 ${\Omega}$. It was confirmed that the multi-filament fibers using PC/mMWNT had $60{\sim}100{\mu}m$ in diameter and 4~5 cm in length.

Dispersion of Multiwalled Carbon Nanotubes by Solution Plasma (솔루션 플라즈마에 의한 탄소나노튜브 분산처리)

  • Gang, Jun;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.291-292
    • /
    • 2014
  • 최근 CNT의 우수한 물리적 성질을 고분자 복합재료의 필러 등으로 이용하고자, CNT를 용액 중에 고분산 시키는 방법에 관한 연구가 많이 이루어지고 있다. 본 연구에서는 용액 중 플라즈마에 의한 방법에 의해 매우 저 농도의 산용액 중에서 CNT표면에 친수화 작용기를 수식하는데 성공하였으며, 이로 인하여 CNT가 순수 중에서 장시간 분산상태를 유지할 수 있음을 확인 할 수 있었다.

  • PDF

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites (다중벽 탄소나노튜브강화 에폭시 매트릭스 복합재료의 열적 및 동적 점탄성 거동 연구)

  • Seo, Min-Kang;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.401-406
    • /
    • 2005
  • In this work, the effect of chemical treatment of multiwalled carbon nanotubes (MWNTs) on glass transition temperature (Tg), thermal stability, and dynamic viscoelastic behaviors of MWNTs-reinforced epoxy matrix composites has been studied by differencial scanning calorimeter (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) measurements. The MWNTs were chemically treated with 35 wt% $H_3PO_4$ (A-MWNTs) or 35 wt% KOH (B-MWNTs) solutions and the changes of surface properties of chemically treated MWNTs were examined by pH, acid and base values, Fourier transfer-infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS) analyses. The chemical treatments based on acid and base reactions led to a significant change of surface characteristics and chemical compositions of the MWNTs, especially A-MWNTs/epoxy composites had higher thermal stability and dynamic viscoelastic properties than those of B-MWNTs and non-treated MWNTs/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

Evaluation on the mechanical perfomance of cement paste using to carbon nanotube dispersion solution prepared by different superplasticizers (탄소나노튜브 분산에 활용된 유동화제 종류가 시멘트페이스트의 역학적 성능에 미치는 영향)

  • Park, Sung-Hwan;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.95-96
    • /
    • 2022
  • Carbon nanotubes has a positive effect on the mechanical properties, functionality, and durability of cement-based materials. In this study, carbon nanotube solutions mixed with two different types of superplasticizers were dispersed by high-pressure homogenizer, and used for preparation of cement paste. The 7and 28day compressive strength were evaluated.

  • PDF