• 제목/요약/키워드: 탄소나노재료

검색결과 586건 처리시간 0.027초

탄소나노튜브와 바인더의 상호작용이 탄소나노튜브/바인더 박막의 정전기적 특성에 미치는 영향 (Effect of intermolecular interactions between CNTs and silane binders on the opto-electrical properties of SWNT/silane binder films)

  • 한중탁;김선영;정희진;정승열;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.97-98
    • /
    • 2009
  • Here, we describe a versatile strategy for precise control of the optoelectrical properties of the single walled carbon nanotube (SWNT)/silane binder hybrid films by noncovalent hybridization. Stable SWNT/silane binder solutions were prepared by direct mixing of high concentration CNT solutions and silane sol solutions. The critical binder content was determined by varying the amount of binder in the SWNT/binder solutions. A binder content of 50 wt% was used to prepare the other SWNT/binder solutions. This study demonstrates how the intermolecular interactions between the SWNTs and the silanes can affect the conductivity of the CNT/binder network films by characterizing the optoelectrical and Raman spectroscopic properties of the SWNT/silane films containing silane binders with various functional groups. The use of the PTMS binder with phenyl groups was found to be most effective in the fabrication of transparent and conductive films on glass substrates. Such a precise control of the optoelectrical properties of SWNT/binder films can be useful to fabricate the high performance conductive thin films, with ramifications for understanding the fundamental intermolecular interaction in carbon materials science.

  • PDF

습식 식각을 이용한 MWCNT-PMDS 변형율 센서 전극 생성에 관한 연구 (Electrode Fabrication of MWCNT-PDMS Strain Sensors by Wet-etching)

  • 정라희;황희윤
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.387-393
    • /
    • 2021
  • 본 논문에서는 습식 식각으로 제작된 구리 전극을 가진 다중벽 탄소나노튜브 PDMS 복합재료 변형율 센서의 전기적 특성을 고찰하였다. MWCNT의 질량분율에 따라 MWCNT-PDMS 변형율 센서를 제작한 후, 전극 부착 표면을 습식 식각한 후 은-에폭시 전도성 접착제를 이용하여 구리 박판을 부착하였다. 2-프로브 방법으로 변형율 센서의 전기 전도성을 측정한 결과, 초기 저항은 MWCNT 함량과 식각 시간에 반비례하였지만 30% 변형율에 대한 저항 변화율은 MWCNT 함량과식각 시간에 비례하였다. 100회 반복 하중 시험 후 저항 변형율 감소는 MWCNT 함량이 증가할수록 식각 시간이 짧아질수록 상대적으로 작게 나타났다. 이는 식각에 의해 MWCNT-PDMS 변형율 센서의 초기 저항 감소에 기인한 것으로 판단된다.

그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구 (Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite)

  • 김성용;박세훈;최경락;박형기;강인필
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선 (Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites)

  • 박미선;배태성;이영석
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 2016
  • 본 연구에서는 전기화학적 바이오센서의 포도당 감지능을 높이고자 금 나노 입자가 분산된 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs)에 CuO를 도입하였다. 금 나노 입자로 인하여 나노 클러스터(cluster) 형상을 갖는 CuO가 합성되었으며, 이는 포도당 감지능력에 매우 큰 영향을 나타내었다. 0.1 mole의 CuO가 합성되었을 때 CuO/Au@MWCNTs 나노복합재를 전극재료로서 바이오센서는 $504.1{\mu}A\;mM^{-1}cm^{-2}$으로 가장 높은 민감도를 보여주었으며, 이 값은 MWCNTs만을 전극으로 이용할 때보다 약 4배 정도 컸다. 또한, 0-10 mM의 긴 선형 구간(linear range)과 0.008 mM의 낮은 LoD (limit of detection) 값을 보여주었다. 이러한 실험 결과들은 CuO/Au@MWCNTs 나노복합재가 CuO를 이용한 다른 전기화학적 바이오센서보다 우수하다는 것을 입증하였으며, 이는 나노 클러스터 형상의 CuO가 포도당 감지에서 전기화학적 반응에 유리하기 때문으로 사료된다.

다중벽 탄소나노튜브와 금나노입자를 사용한 나노박막의 특성연구 (Characterization of Au-MWNT nanocomposite in thin films)

  • 김정수;배종성;고창현;오원태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.49-49
    • /
    • 2009
  • Nanocomposites of gold nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared by electrostatic interaction. Gold nanopartic1es were stabilized by polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and poly(sodium-4-styrenesulfonate) (PSS) in aqueous medium, and MWNTs were modified by poly(diallyldimethylammonium)chloride (PDDA) in water. The as-perpared Au-MWNT nanocomposites were structurally and electrically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclo voltammetry (CV). UV/Vis spectra of Au-MWNT nanocomposites showed the characteristic surface plasmon bands in the range of ~515nm, depending on the stabilizers. There is only slight change on the band shape with variation of stabilizing agents for gold nanoparticles. Through FE-SEM and TEM images, the distribution of gold, nanoparticles on the sidewalls of MWNTs was deliberately investigated on Au-MWNT nanocomposites treated with different stabilizers. XPS and CV showed redistribution of electron densities and changes in the binding energy states of nanopartic1es in nanocomposite respectively.

  • PDF

전도성 고분자/CdTe 나노입자/탄소 나노튜브 복합박막의 특성 연구 (Characterization of Conducting Polymer/CdTe Nanoparticles/Carbon Nanotube Composites in Thin Films)

  • 김도훈;심성은;김정수;남대근;오원태
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.315-320
    • /
    • 2013
  • The composites composed of conducting polymer (MEH-PPV), CdTe nanoparticles, and multiwalled carbon nanotubes (MWNTs) were spectroscopically and electrically characterized in their thin films. The composite films were prepared by spray coating. These composites were prepared from the mixture solution of MEH-PPV and CdTe-embedded MWNTs, in which CdTe nanoparticles were electrostatically bound to MWNTs. UV/vis and PL spectra were analyzed to investigate the optical absorbance and emission of the composite films. In addition, their structural, electrochemical, and electrical properties were studied by transmission electron microscopy, cyclic voltammetry, and I-V measurement.

홑겹 탄소 나노튜브 네트워크의 게이트 의존성과 온도 의존성 (Field effect and temperature dependence on the conductance of the carbon nanotube network)

  • 오동진;원부운;김강현;강해용;김혜영;김규태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.147-150
    • /
    • 2004
  • Back gate가 있는 $SiO_2$ 기판에 SWCNT(Single Walled Carbon Nanotube) 분산액을 도포하여 SWCNT 네트워크를 형성하였다. 금선을 shadow mask로 사용하여 $10{\mu}m$ 간격의 2단자 금 전극을 열 증착을 통해 형성하였다. 현미경 포토리소그래피를 통하여 시료의 가장자리를 Photoresist로 남겨두어 시료 가장자리의 나노튜브를 통한 단락을 방지하였다. 전류-전압 특성, 게이트 특성과 온도 의존성은 DAQ(Data Aquisition) 보드와 Keithley 2400을 사용하여 측정하였고, Labview 기반 프로그램을 통해 제어하였다. 음의 게이트 전압에서의 저항 감소를 관측함으로써 네트워크 상태에서의 게이트 의존성이 P 형 반도체 성질을 보여줌을 알 수 있었으며, 온도가 올라감에 따라 저항이 지수 함수적으로 증가하는 것으로부터 네트워크의 온도 의존성이 금속성 온도 의존성을 가지는 것을 확인하였다.

  • PDF

탄소나노튜브/V2O5 나노선 헤테로 구동소자 특성연구 (MWCNTs/V2O5 Nanowire Hetero-junction Actuator Devices)

  • 이강호;이성민;박소정;허정환;김규태;박성준;하정속
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.250-254
    • /
    • 2006
  • Hetero-junction sheet actuator composed of carbon nanotubes and $V_{2}O_5$ nanowires were demonstrated in a bimetal configuration. The successive filtration of $V_{2}O_5$ nanowire solution followed by carbon nanotube dispersed water solution in the same way produced a dark-gray colored sheet. A significant actuation was observed in sodium chloride electrolyte solution with a bending direction to the carbon nanotube side at the positive bias voltage against the copper counter-electrode. As the frequency of the applied voltage increased, the amplitudes decreased, indicating a rather slow response of the hetero-film actuator in the electrolyte solution. The hybrid structure enabled an easy fabrication of the film actuator with the enhanced efficiencies.

열처리를 통한 금 나노입자의 크기 제어와 일벽 탄소나노튜브의 합성 촉매로의 이용 (Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth)

  • 이승환;정구환
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.737-744
    • /
    • 2013
  • We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.

탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가 (Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles)

  • 최철;정미희;오제명
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.