• Title/Summary/Keyword: 탄소강화 복합재

Search Result 79, Processing Time 0.027 seconds

Moisture Absorption Behavior of CNT Reinforced Unsaturated Polyester Composites (CNT 강화 불포화 폴리에스터 복합재료의 수분흡수 거동에 관한 연구)

  • Park, Ji-Hye;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.536-538
    • /
    • 2011
  • In this study, the moisture absorption behaviors of the CNT reinforced unsaturated polyester composites were investigated along with exposure temperature and time. The tensile properties of the specimens were evaluated to identify the effect of absorbed moisture on the mechanical properties. The exposure temperatures of $25^{\circ}C$ and $75^{\circ}C$ were considered and the exposure time up to 600 hours was applied. According to the results, moisture absorption rate was increased as CNT content and exposure temperature were increased. The rate of decrease in tensile strength of the CNT reinforced unsaturated polyester composites was reduced due to the reinforcing effect of CNT compared to the unsaturated polyester resin.

  • PDF

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites (팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가)

  • Oh, Kyung-Seok;Heo, Seong-Il;Yun, Jin-Chul;Han, Kyung-Seop
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2007
  • Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

potential of Noncircular Fiber as Reinforcing Material l. C-type carbon fiber

  • Boh, Shim-Hwan;Rhee Bo sung
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.817-822
    • /
    • 1994
  • The reinforcing effect of C-shape carbon fiber was investigated as comparing to typical round-shape fiber with similar properties. The results show that C-shape fiber reinforced materials have better in almost all aspects of mechanical properties, or 218% in flexural strength, 223% flexural modulus, 157% interlamina shear strength, 227% impact strength, 184% transverse flexural strength and so on. Also in damping characteristics considerably concerned with fatigue life, friction/wear coefficient of a material, C-CF/EP had about 185% greater. In this research, we present the potential of non-circular fiber reinforcing materials by C-shape carbon fiber.

  • PDF

Study on Abrasive Wear Behaviour of a Carbon Fiber Composites (탄소 섬유 강화 고분자 복합재의 연삭마모 특성에 관한 연구)

  • Koh, S.W.;Yang, B.C.;Kim, H.J.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • Present study was investigated the effect of the particle of the counterface of unidirectional carbon fiber reinforced composite. The friction coefficient of composite and the specific wear rate different sliding velocity were measured for this materials. The friction track of counterface was observed by an optical microscope and scanning electron microscope. There were insignificant effects of the specific wear rate under lower Sic abrasive particle, however it showed high effect on $30{\mu}m$ abrasive particle size. There were significant effects of friction and wear behavior of the fiber direction under 0.3m/s sliding speed. Major failure mechanisms can be classified such as microfracture, plowing, microcutting, cutting and cracking.

  • PDF

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Bending Performance of Glulam Beams Reinforced with Carbon Fiber-Reinforced Plastics Bonded with Polyvinyl Acetate-Based Adhesive (초산비닐수지계 접착제를 사용한 탄소섬유강화플라스틱 복합집성재의 휨 성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.364-371
    • /
    • 2009
  • This study was carried out to investigate the bending strength of the Larix glulam beams which were reinforced with CFRP (Carbon fiber reinforced plastic) of which the reinforcement ratios were 0.7% and 2.1% by volume. In the bending test, the rupture shape of the reinforced glulam shows that the reinforced glulam broke firstly in the lowest bottom layer on which tension was loaded, but did not in the upper part reinforced with the CFRP layer. The upper part of the reinforced layer kept strength and did not break when the reinforced glulam broke firstly at the bottom part of the reinforced layer, but broke secondly as loading was increased. In the glulam beams reinforced with CFRP of which the reinforcement ratio was 0.7% by volume, the bending strength of the reinforced beams was increased by 28% at the first break. When beams broke up to the upper part of the reinforced layer, the bending strength of the reinforced beams was increased by 55%, compared to those of control glulam beams. When the glulam beams were reinforced with CFRP of which the reinforcement ratio was 2.1% by volume, the bending strength of the reinforced beams was increased by 77%, compared to those of control glulam beams. The ratio of the height of calculated neutral axis using failure mode recommended by Romani and the height of actual neutral axis using strain gauge was 1.03 and agreed well.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature (로켓 노즐목 소재 C/SiC 복합재 고온 파괴 특성)

  • Yoon, Dong Hyun;Lee, Jeong Won;Kim, Jae Hoon;Sihn, Ihn Cheol;Lim, Byung Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2016
  • In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

추진기관에 사용되는 내열 복합재료

  • Jeong, Bal
    • Defense and Technology
    • /
    • no.9 s.163
    • /
    • pp.46-50
    • /
    • 1992
  • 고온, 고압의 추진제 연소가스로부터 노즐 구조물을 보호하기 위해 사용되는 열 차폐용 삭마성 내열재료(ablative material)의 종류와 재료선정을 위한 시험방법, 설계 및 제작기법, 성능평가 기준 등에 관한 연구동향을 검토하고 본 연구팀의 연구결과를 제시하였습니다 고체추진제 연소 환경하에서의 노즐 보호재료로서는 고분자계 삭마성 내열재가 주로 사용되는데, 이 ablative material에는 여러 종류가 있으나 높은 heat flux와 빠른 mass flow에 대한 내열을 위해서는 페놀, 폴리이미드 등 열경화성 수지인 charring material이 모재로 주로 사용되며 강도향상을 위해서 탄소, 실리카, 석면, 유리등의 강화섬유가 보강재로 사용됩니다 현재는 모재로서 고분자계 수지외에도 세라믹과 같은 무기재료, 금속재료등과 강화섬유를 조합하여 내열성과 강도가 향상된 재료를 개발하는 연구도 진행되고 있습니다

  • PDF

Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type (나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가)

  • Jun Ha Park;Soon Ho Yoon;Minkook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.186-189
    • /
    • 2024
  • This study compared and evaluated the mechanical properties of carbon fiber reinforced thermoplastic polymer (CFRTP) mixed with nanofillers. After mixing various nanofillers such as Multi-wall carbon nanotube (MWCNT), Silicon oxide, Core shell rubber, and Aramid nanofiber with Polyamide 6 (PA6) resin, this is used as a matrix to create a carbon fiber reinforced composite material (CFRP) was manufactured and its physical properties were measured. Depending on the type and mixing ratio of nanofiller, tensile strength, inter-laminar shear strength (ILSS), and Izod impact strength were measured. In terms of tensile strength and impact strength, the highest values were obtained when mixing core shell rubber, however the ILSS was optimal when mixing less than 1 wt.% of silicon oxide.