• Title/Summary/Keyword: 탄성 힘

Search Result 155, Processing Time 0.024 seconds

Physical Characteristics of Red Pepper Powder by Cultivation Area and Variety (품종과 재배지역에 따른 고춧가루의 물리적 특성)

  • Oh, Seung-Hee;Kim, Hyun-Young;Hwang, Cho-Rong;Hwang, In-Guk;Hwang, Young;Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Hae-Young;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This study investigated the physical properties of red pepper powders according to cultivation area and variety. Values for density, compressive characteristics, dynamic angle, irrecoverable work, and stress relaxation were analysed. Loose bulk density ranged between 0.40 and 0.50 g/$cm^3$, and tapped bulk density ranged between 0.49 and 0.67 g/$cm^3$. The highest Hausner ratio was 1.369 for PRmanitta cultivated in Eumseong and the lowest value of was 0.194 for Buchon cultivated in Yeongyang. Compressibility ranged between 0.0046 and 0.0092. The highest compression ratio was 1.040 for Myeongjak cultivated in Suwon, and the lowest value was 1.007 for Buchon cultivated in Yeongyang. Dynamic angles ranged between 35.14 and $41.70^{\circ}$. The highest irrecoverable work value was 79.9% for PRmanitta cultivated in Eumseong and the lowest value was 67.9% for Nokgwang cultivated in Suwon. The greatest $k_2$ and relaxation values of stress relaxation characteristics were 1.56 and 42.03%, respectively, for Cheongyang cultivated in Yeongyang.

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Stress distribution following face mask application using different finite element models according to Hounsfield unit values in CT images (CT상의 HU 수치에 따른 상악골 전방견인 효과의 유한요소 분석)

  • Chung, Dong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.412-421
    • /
    • 2006
  • Objective: The result of finite element analysis depends on material properties, structural expression, density of element, and boundar or loading conditions. To represent proper elastic behavior, a finite element model was made using Hounsfield unit (HU) values in CT images. Methods: A 13 year 6 month old male was used as the subject. A 3 dimensional visualizing program, Mimics, was used to build a 3D object from the DICOM file which was acquired from the CT images. Model 1 was established by giving 24 material properties according to HU. Model 2 was constructed by the conventional method which provides 2 material properties. Protraction force of 500g was applied at a 45 degree downward angle from Frankfort horizontal (FH) plane. Results: Model 1 showed a more flexible response on the first premolar region which had more forward and downward movement of the maxillary anterior segment. Maxilla was bent on the sagittal plane and frontal plane. Model 2 revealed less movement in all directions. It moved downward on the anterior part and upward on the posterior part, which is clockwise rotation of the maxilla. Conclusion: These results signify that different outcomes of finite element analysis can occur according to the given material properties and it is recommended to use HU values for more accurate results.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.