• Title/Summary/Keyword: 탄성파 반사법

Search Result 113, Processing Time 0.025 seconds

해상 탄성파탐사 기법을 이용한 단층파쇄대 분석 적용사례

  • 이준석;최세훈;김재관;최원석
    • Geotechnical Engineering
    • /
    • v.20 no.4
    • /
    • pp.38-49
    • /
    • 2004
  • 해상 반사법탐사는 해저 지반의 지층구조를 파악하는 기술로서 해저지층에 부존하는 가스나 골재 등 해저자원 탐사와 해저의 저장시설 건설, 파이프라인 설치 등 다양한 해양 토목공사를 위한 지반조사에 사용된다. 해상 반사법탐사의 기본적인 원리는 해수면 근처에서 인공적으로 음파를 발생시켜 해저면 하부의 지층으로 침투시키면 서로 다른 물성을 갖는 지층의 경계면에서 일부 음파는 반사되는데, 이 반사파를 수신하는 것이다. 탐사과정에서 얻어진 트레이스에는 반사파 이외에도 직접파, 다중반사파와 같은 잡음이 섞여있는데 자료처리를 통해 탄성파 단면도를 작성하고, 이를 해석하여 해저지반의 지질학적 구조를 파악하는 것이 해상 반사법탐사의 목적이다.

  • PDF

연속 굴절파 중합 방식을 활용한 충적층 지하수위 조사기법 소개 및 현장 응용

  • 김형수;김중열;김유성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.83-87
    • /
    • 2004
  • 본 연구는 고해상도의 충적층 지하수위 분포 조사를 위한 탄성파 굴절법 조사 방법을 소개하고 부여 군수리 충적층 일대에서 이 기법을 통해, 획득된 실제 충적층내의 지하수위 조사 결과를 제시한다. 기본적으로 본 연구에서 활용된 연속 굴절파 중합 방식은 동일 공심점(common mid point, 이후 CMP)을 갖는 굴절파 신호를 취합하고, 이격 거리(offset)에 대한 시간 지연 효과 보정을 수행한 후, 이들 신호를 중합하여, 충적층의 지하수위면에서 굴절된 신호를 보다 뚜렷이 부각시켜 정확한 지하수위 정보를 획득 하는 방식으로 일명 CMP 굴절법이라고도 한다. 이 방식은 독일에서 최초 개발되었으나(Gebrande, 1986; Orlowsky 등, 1998), 국내에서 적용되기는 본 연구가 최초이다. 이러한 탄성파의 굴절 신호를 사용하는 방식은 우선, 기존의 일반적인 고해상도 반사법 탐사에서 잡음으로 여겨졌던 굴절파 신호를 활용할 수 있으며, 고해상도 반사법 탐사와 동일한 배열과 운영 방식으로 획득된 자료에서 원하는 정보를 획득할 수 있으므로, 고해상도 반사법에 의한 기반암 조사와 함께 적용될 경우, 정화한 충적 대수층의 분포를 조사할 수 있게 하여주는 획기적인 조사 신기술이다. 개발된 기법은 부여 군수리 충적층 지역을 대상으로 적용되었으며, 그 결과 기존의 어떠한 지구물리 조사 방법보다 정확하고 분명한 지하수위 분포를 보여주었다.

  • PDF

High Resolution Shallow Seismic Reflection Survey for the Investigation of Ground Disturbance Area (지반교란 영역 규명을 위한 고분해능 천부 탄성파 반사법 탐사)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • A problem of ground subsidence has been a focus of our research over the past 3 years. The purpose of this study is to investigate the disturbed stratigraphic structure by mining and to separate the possible ground subsidence area using shallow seismic reflection survey and processing. To overcome the problems such as the distortion and attenuation of seismic signal caused by ground disturbance and to acquire the high frequency data, an array with short spacing (0.3m) for both the shot and receivers, yielding near-offset (<30m) and CMP spacing of 0.15m was implemented. Data were acquired along the survey line with length of about 43m by fixed receiver array. By considering statics caused by the ground disturbance and offset distribution of data, careful processing steps such as muting and residual statics correction were applied for successful shallow reflection imaging. By correlating the ground subsidence data and stack section, possible subsidence zone could be interpreted quantitatively.

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

Seismic coda waves for gas-hydrate seismic data (가스 하이드레이트 탄성파 자료 코다 파 (coda waves) 연구)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Kim, Young-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.497-500
    • /
    • 2007
  • 탄성파 코다 파는 두 수진기에서 기록된 탄성파 자료의 상호상관으로부터 두 신호에 대한 순간응답을 구하고 이로부터 지층정보를 구하는데 이용된다. 여기에서는 인공합성 탄성파 자료와 가스 하이드레이트 현장자료에 적용하여 상호상관 모음도와 가상음원 모음도 (virtual source)를 구하고자 하였다. 인공합성자료는 해저면 탄성파 탐사법 (ocean bottom seismic)을 모델로 이용하여 인공합성 탄성파 단면도를 제작하였으며, 탄성파 코다 파를 살펴보기 위해 인공 OBS 자료 중 첫 번째 트레이스를 가상음원으로 정하고 모든 음원 모음도와 상호상관으로 가상응원 단면도를 제작하였다. 현장자료 적용으로는 해저면 기인 고진폭 반사파인 BSR (bottom simulating reflection)을 포함하고 있는 자료를 선정하여 상호상관 단면도와 가상음원 단면도를 제작하였다. 중합단면도상에 나타난 가스 분출지역은 상호상관 단면도에서도 나타났으며, 중합단면도상 BSR부분은 vs 단면도에서 강한 반사파를 보여줌을 알 수 있었다.

  • PDF

A study on monitoring the inner structure of dam body using high resolution seismic reflection method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim Jungyul;Kim Hyoungsoo;Oh Seokhoon;Kim Yoosung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.15-20
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes, After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture, Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Application of seismic reflection method in the tunnel of Youngdong railroad (Mt. Dongbaek~Dokye) (영동선 동백산-도계간 터널내 반사법 탄성파탐사 적용사례)

  • Kim, Yong-Il;Cho, Sang-Kook;Yang, Jong-Hwa;Kim, Jang-Soo;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.89-100
    • /
    • 2003
  • Seismic Reflection Methods (TSP, HSP) have been applied in the junction between 2nd Adit and Main Tunnel (Solan Tunnel) of Youngdiong Railroad (Mt. Dongbaek~Dokye). In this paper, methods and case study will be introduced to predict discontinuties in the tunnel before excavation by the Seismic Reflection Methods (TSP, HSP)and secure construction stability of the tunnel in blasting and excavation.

  • PDF

Application of Geophysical Prospecting Method to Calculate Basic Data of Limestone Deposit Production (석회암 매장량 산출의 기초자료 계산을 위한 지구물리탐사법의 적용)

  • 서백수;김영화;진호일
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2001
  • Until recently, limestone yield production is mainly depend on geological investigation and boring. In the study seismic and electrical method are applied to calculate the basic data of limestone yield production. the result of geophysical prospecting, the depth of bed rock is approximately 17m. And there is a slightly difference between the limestone layer boundary which is drawn by electrical prospecting method and that of geological investigation.

  • PDF

A Study on the Shallow Marine Site Survey using Seismic Reflection and Refraction Method (탄성파 반사법 및 굴절법을 이용한 천해저 지반조사에 대한 연구)

  • Shin, Sung-Ryul;Kim, Chan-Su;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • It is very important to estimate the physical properties of survey area and delineate the geological basement in marine site survey for the design of offshore structures. For the purpose of providing high quality data by means of engineering site survey, it is necessary to apply several survey techniques and carry out the integrated interpretation to each other. In this study, we applied single channel seismic reflection method and OBC (Ocean Bottom Cable) type seismic refraction method at shallow marine. We used a dual boomer-single channel streamer as a source-receiver in seismic reflection survey and airgun source-the developed OBC type streamer in seismic refraction survey. We made 24 channels OBC type streamer which has 4m channel interval and each channel is composed of single hydrophone and preamplifier. We tested the field applicability of the proposed method and applied the typical seismic data processing methods to the obtained reflection data in order to enhance the data quality and image resolution. In order to estimate the geological velocity distribution from refraction data, seismic refraction tomography technique was applied. Therefore, we could successfully perform time-depth conversion using the velocity information as an integrated interpretation. The proposed method could provide reliable geologic information such as sediment layer thickness and 3D basement depth map.