• Title/Summary/Keyword: 탄성파 굴절법 자료

Search Result 65, Processing Time 0.022 seconds

Subsurface Investigation of Dokdo Island using Geophysical Methods (물리탐사기법의 독도 지반조사 적용)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.335-342
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface, along with rock physical property measurements in Dokdo island. The survey results in Seodo island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction, and that Bedded Lapilli Tuff in the downstream was more severely influenced by weathering and erosion than Trachy Andesite II in the upstream of the survey area. In Dongdo island, Trachy Andesite III and Scoria Bedded Lapilli Tuff were severely weathered and eroded, considered as weathered to soft rock formations, and their weathered zone becomes thicker towards the antiaircraft facility in the NE direction of the survey area. The study results also illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Stratified Ash Tuff is the most soft rock in Dokdo island.

경주시 감산사단층 부근에서의 탄성파 굴절법 조사

  • Kim, Gi-Yeong;Kim, Dong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • In order to delineate distribution of the basement in the vicinity of a Quaternary fault outcrop near the Gamsansa temple in Gyeongju, we conducted a seismic refraction survey along a 188 m profile with a 4 m receiver interval. Through tomographic inversion, we define four layers with refraction velocities of approximately 350 m/s, 600 m/s, 1,100 m/s and 2,400 m/s, respectively. We depict a reversed fault at a location of 40 m apart from the base station of the profile and interpret a fracture zone related to fault movements in the NNW of the profile.

  • PDF

Seismic Weathering Correction Using IRS Approach: A Test to the Synthetic Data of Cheongju Granitic Bodies (IRS(간섭 굴절보정)를 이용한 탄성파 풍화대 보정: 청주 화강암체에 대한 적용)

  • Kang, Yu-Gyeong;Sa, Jin-Hyeon;Kim, Ji-Soo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.153-162
    • /
    • 2019
  • Rapid variations in the geometry (i.e., thickness) of the refractor and low velocities affect greatly the imaging of the reflectors of land seismic data. Conventional solutions to obtain the weathering models utilizes first break picking method, which requires time consuming steps and causes the human error in picking the first arrivals. A new interferometric approach (interferometric refraction statics, IRS) which utilizes the first arrival signal (S/N enhanced by refraction convolution stack) instead of first break picking, is tested in this study to the synthetic data from the velocity structure provided by surface geophysics (refraction, MASW) and borehole geophysics (tomography, SPS logging) for the Cheongju granitic bodies. The results of IRS approach are found to be better than the ones from conventional first break picking in terms of continuities and horizontal resolution of the reflectors. The unresolved long-wavelength statics in brute stack are much removed by IRS weathering correction and the overlying refractors (the base of shallow weathering zone) are incidentally delineated in the refraction convolution stack.

A simple approach to refraction statics with the Generalized Reciprocal Method and the Refraction Convolution Section (GRM과 RCS 방법을 이용한 굴절파 정적 시간차를 구하는 간단한 방법)

  • Palmer Derecke;Jones Leonie
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We derive refraction statics for seismic data recorded in a hard rock terrain, in which there are large and rapid variations in the depth of weathering. The statics corrections range from less than 10 ms to more than 70 ms, often over distances as short as 12 receiver intervals. This study is another demonstration of the importance in obtaining accurate initial refraction models of the weathering in hard rock terrains in which automatic residual statics may fail. We show that the statics values computed with a simple model of the weathering using the Generalized Reciprocal Method (GRM) and the Refraction Convolution Section (RCS) are comparable in accuracy to those computed with a more complex model of the weathering, using least-mean-squares inversion with the conjugate gradient algorithm (Taner et al., 1998). The differences in statics values between the GRM model and that of Taner et al. (1998) systematically vary from an average of 2ms to 4ms over a distance of 8.8 km. The differences between these two refraction models and the final statics model, which includes the automatic residual values, are generally less than 5 ms. The residuals for the GRM model are frequently less than those for the model of Taner et al. (1998). The RCS statics are picked approximately 10 ms later, but their relative accuracy is comparable to that of the GRM statics. The residual statics values show a general correlation with the refraction statics values, and they can be reduced in magnitude by using a lower average seismic velocity in the weathering. These results suggest that inaccurate average seismic velocities in the weathered layer may often be a source of short-wavelength statics, rather than any shortcomings with the inversion algorithms in determining averaged delay times from the traveltimes.

Application of Geophysical Survey to the Geological Engineering Model for the Effective Detection in Foundation of Stone Relics (석조문화재 기초지반 파악을 위한 모형지반에서의 탐사기법 적용)

  • Kim, Man-Il;Lee, Chang-Joo;Kim, Jong-Tae;Kim, Ji-Soo;Kim, Sa-Dug;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • To effectively delineate the foundation of stone relics by GPR and seismic refraction methods, a geological engineering model was constructed with alternating layer of soil and gravel to a depth of 3 m. This study was aimed at mapping the boundaries of model ground structure and interfaces of alternating layer using the various frequency antenna in GPR survey and seismic velocities. Compared to the resolution from the high frequency antenna, the image resolution from the survey using 100 Hz antenna is the lower, but with the deeper image coverage. On the contrast, the deeper structure was not mapped in the higher frequency data due to higher absorption effect, but the shallow layered zone was distinctively resolved. Therefore subsurface images were effectively provided by integrating the data with 100 MHz and 450 MHz antennas for the deep and shallow structures, respectively. Regarding the seismic refraction data, the boundaries of the model and interface of the alternating layers were not successfully mapped due to the limit of the survey length. However, the equivalent contours of low velocity extended deep as considerable velocity contrasts with surrounding ground.

Application of Geophysical Methods for Developing Saline Groundwater from an Coastal Aquifer (해안지역 염지하수 개발을 위한 물리탐사 적용 사례)

  • Lim, Sung Keun;Song, Sung-Ho;Kim, Soo Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.255-261
    • /
    • 2018
  • The purpose of this study was to obtain a large amount of saline groundwater around coastal aquaculture farms. Thus, we have proposed a method for evaluating the potential amount of saline groundwater resources through the combined analysis of geophysical methods. Refraction seismic survey and electrical resistivity survey were conducted in the vicinity of fish farm at Hadong, Gyeongnam Province. As the result, the velocity of layer in the range of 900 ~ 2,400 m/s was found to be saltwater aquifer with high water content. Geological drilling investigation and analysis of soil samples also showed that the soil at study area was the same as the texture of sandy loam layer in agricultural radial collector wells installed by KRC (Korea Rural Community Corporation). Futhermore, the study area turned out to be quite possible to develop saline groundwater from the coastal shallow aquifer. Therefore, parallel analysis of refraction seismic surveys and electrical resistivity surveys at coastal area are expected to be very useful for the detection of the aquifer composed of sand and gravel layers with high porosity in sandy sedimentary layers along the coastal area.

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR) (최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구)

  • Whiteley, Robert J.;Stewart, Simon B.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.

Geophysical and Geological Investigation for Selecting a Dinosaur Museum Site in the Dinosaur Egg Fossil Area, Gojeong-ri, Hwasung, Gyeonggi Province (경기도 화성 고정리 공룡알 화석지 공룡생태박물관 부지선정을 위한 지구물리 및 지질조사)

  • Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.357-363
    • /
    • 2010
  • In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF