• Title/Summary/Keyword: 탄성체 모델

Search Result 190, Processing Time 0.026 seconds

Characteristics of Strength and Fracture Toughness of Recycled Aggregate Concrete (재생골재 콘크리트의 강도 및 파괴특성 실험)

  • Kim, Jin-Cheol;Yang, Sung-Chul;Cho, Yoon-Ho;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.37-45
    • /
    • 2004
  • The characteristics of concrete strength and fracture parameters of recycled aggregate concrete were investigated to apply to the concrete pavements. As the results, the early strength of recycled aggregate concrete showed to be lower than that of natural coarse aggregate concrete, whereas strength at 28 days showed to be similar. Young's modulus of recycled aggregate concrete was lower than that of natural coarse aggregate concrete due to the difference of aggregate strength. And recycled aggregate concrete contained with ground granulated blast furnace slag seemed to have an effect of strength increasing. The critical stress intensity factor of recycled aggregate concrete at the early age was increased, and converged to be similar, compared to natural aggregate concrete at later age. The reliability of two-parameter fracture model was identified by the good correlation between the theoretical value computed by P-CMOD relationship and experimental results for Young's modulus and tensile strength.

  • PDF

Effects of Oscillating Flow on the Dynamic Behavior of an Artificial Sensory Hair (인공 감각모의 동적 거동에 미치는 진동유동의 영향)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. The hairs function as a sensory system for perceiving information produced by prey, predators, or conspecifics. A mathematical model is proposed, and the parametric analyses for the response of artificial filiform hair are conducted to design and predict the performance of a microfabricated device. The results for the Cytop hair, one of the most popular polymer optical fibers (POFs), show that the fundamental mode has a dominant effect on the hair behavior in an oscillating medium flow. The dynamic behavior of sensory hair is also dependent on the physical dimensions such as length and diameter. It is found that the artificial hair with a high elastic modulus does not show a resonance in the biologically important frequency range.

Nonlinear Finite Element Analysis of Reinforced Concrete Columns (철근콘크리트 기둥의 3차원 비선형 유한요소 해석)

  • Kwon Minho;Chang Chun Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.397-406
    • /
    • 2004
  • A recently developed three dimensional concrete law is used for the analysis of concrete specimens and reinforced concrete columns subjected to different load patterns. The hypoelastic, orthotropic concrete constitutive model includes coupling between the deviatoric and volumetric stresses, works with both proportional and non-proportional loads and is implemented as a strain driven module. The FE implementation is based on the smeared crack approach with rotating cracks parallel to the principal strain directions. The concrete model is validated through correlated studies with: (a) experimental tests on confined concrete cylinders; (b) experimental results on three reinforced concrete columns tested at the University of California, San Diego. The correlations are overall very good, and the FE responses capture all the main phenomena observed in the experimental tests.

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

Strength and rigidity test of a small sedan body (승용차 차체의 정적 강도 및 강성시험)

  • 박광남;박성현
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 1981
  • 모든 차형을 간단한 이상형으로 가정하여 그들을 수치적인 값으로 비교할 수 있다면 승용차 차 체의 설계상 매우 큰 도움이 될 것이다. 실제로 새로운 모델의 차가 개발되었을 때에는 다음과 같은 이유 때문에 그 prototype body에 대한 정적 시험이 실시되고 있다. 1) 조기에 설계의 문제점이나 차체의 주결함을 발견할 수 있어 시간과 경비를 절약할 수 있다. 2) 계속적인 정적 시험을 통하여 구조적으로 만족할 만한 road car를 만들 수 있다. 3) 과설계를 방지하여 차체의 경량화에 기여하고, 최적설계의 개발을 위한 길을 제시해 준다. 차체에 대한 정적 시험은 위와 같은 이유 때문에 발전되어 왔으며, 정적 시험의 효과를 ㅊ대로 하기 위하여 그것은 순수한 공학적 원리에 기초를 두어 실제의 사용조건과 충분히 일치되는 시 험으로서 고안되었다. 차체구조는 그 사명의 다양성뿐만 아니라 제작, 개수에 상당한 노력과 시 간이 필요하기 때문에 조기에 문제점을 발견하여 결함을 제지하지 않으면 안된다. 구조체로서의 많은 필요조건 중에서 특히 중요시되는 것은 강도, 강성 및 내구성이다. 그 때문에 차체의 강도, 강성시험은 이론적인 해석(탄성학, 구조역학, 강도학 등)에 앞서 여러가지 방법이 개발되어 왔 으며, 여기에서는 그 중 가장 대표적인 방법인 비틀림시험(torsion test)과 굽힘시험(bending test) 에 관하여 Pony 4-door Sedan 차체의 시험 결과를 토대로 하여 기술하고자 한다.

  • PDF

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

Synthesis of Earthquake Ground Motion by Combining Stochastic Line Source Model with Elastic Wave Propagation Analysis Method in a Layered Half Space (추계학적 선진원 모델과 층상반무한체에서의 탄성파 전파 해석법에 의한 지진 지반운동 합성)

  • KIM, Jae Kwan;KWON, Ki Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.97-105
    • /
    • 1996
  • A Stochastic line source model is developed to simulate the seismic wave field generated during the rupture propagation process along a fault plane of which length is much larger than its width. The fault plane is assumed to consist of randomly distributed slip zones and barriers and each slip zone is modeled as a point source. By combining the newly developed source model with wave propagation analysis method in a layered 3-D visco-elastic half space, synthetic seismograms are obtained. The calculated accelerograms due to vertical dip slip and strike slip line sources are presented.

  • PDF

A Study on the Determination of the Principal Coordinate System of Composite Rotor Blade having Arbitrary Cross Section (임의 단면을 갖는 복합재료 회전익의 주축계 결정에 관한 연구)

  • Yu, Yong-Seok;Choe, Myeong-Jin;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.981-987
    • /
    • 1997
  • Modern helicopter rotor blades with non-homogeneous cross section composed of anisotropic material rquire highly sophisticated structural analysis. Variation in cross section geometry makes this task of analysis more complicated. Since rotor blades generally are much longer than their lateral dimensions, one-dimensional models seem feasible, at least from a computational point of view. Therefore determination of the principal coordinate system is very important to remove the structural coupling for one-dimensional beam modelling. In this study, shear center, and principal direction. The method will be verified by comparing the results with confirmed experimental results.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.