• Title/Summary/Keyword: 탄성전단좌굴

Search Result 48, Processing Time 0.034 seconds

Experiments on the Performance of a Thin-Plate Damper Attached to a Coupling Beam (연결보에 부착된 박판형 금속 감쇠기의 성능실험)

  • Lee, Young-Wook;Chae, Ji-Yong;Park, Tae-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.25-33
    • /
    • 2012
  • To examine the performance of a thin plate damper attached to coupling beam of bearing wall system, 5 specimens were designed with the variable parameters of the thickness and length of a thin steel plate, which was constructed and tested with a lateral load with up to a 5% drift ratio. The result was that the total amount of the energy dissipation of the specimen with the thin plate damper was greater than that of the standard RC specimen, and the plate buckling and plastic deformation could be seen in steel plate. The shorter the length of the damper, the higher was the lateral resistant force, but there was no apparent increase in the energy dissipation. By comparison of the experiments with the elastic buckling analysis, it was shown that the buckling force from the analysis could properly estimate the maximum value of the linear elastic range.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.