• Title/Summary/Keyword: 탄성모세관

Search Result 12, Processing Time 0.034 seconds

Pattern collapse of 3D-printed structures induced by elastocapillarity (탄성모세관 기반 3D Print구조물의 패턴 붕괴)

  • Jaeik Choung;Uijin Oh;Yoonseok Choi;Jonghyun Ha
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • The mechanical stability of 3D-printed structures is critical for their performance across various applications, where geometric design plays a pivotal role in determining their resilience. Understanding the factors that contribute to the collapse of these structures is essential for optimizing their design. In this study, we fabricated vertical repetitive pattern structures using a Formlabs 3D printer, followed by post-processing with isopropyl alcohol (IPA). The collapse behavior of the printed patterns was visualized, revealing that the extent of collapse varied depending on geometric modifications. These findings provide key insights into the structural collapse mechanisms of 3D-printed architectures, informing future design strategies aimed at improving mechanical durability and preventing collapse. This version introduces the topic with general context before transitioning to your specific experimental approach.

Study on the dynamics of capillary rise between elastic sheets (탄성박판간의 모세관 상승운동에 관한 연구)

  • Ahn, Won-Jin;Kim, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2743-2746
    • /
    • 2007
  • When a small tube is dipped into a liquid surface, surface tension forces cause the liquid in the tube to rise vertically against the gravity. When the tube is flexible, hydrostatic pressure difference caused by the capillary flow deforms the tube and the deformation which narrows the flow route changes the rising velocity. We study a simple model of this elastocapillary interaction in the context of the surface-tension-driven vertical rise of a liquid between two long flexible hydrophilic sheets that are held a small distance apart at one end. We provide an analytical theory for the rise rate of the liquid and show that our experiments are consistent with the theory.

  • PDF

Analysis of the PZT trasducer's response for the transient elastic waves (과도탄성파에 대한 PZT 변환자의 응답특성 해석)

  • 배종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.9-12
    • /
    • 1998
  • 공기경계층을 갖는 유리평판에서 힘의 크기가 10N이고 상승시간이 약 280ns 인 경사 점하중이 인가된 경우에 대하여 진앙점에서 입자 변위와 입자 속도를 계산하였다. 이론적으로 계산된 수직성분이 입자속도가 PZT변환자에 입사한다고 가정하여 PZT 변환자의 과도 응답특성을 Mason 등가회로와 격자점을 이용하여 계산하였다. 유리모세관의 파과시에 방출괴는 과도탄성파를 이용하여 유리평판의 진앙점에서 PZT 변환기의 응답을 조사하였고, 이론과 비교한 결과 상당히 일치하였다. 이를 이용하여 음향방출 시스템인 발생원, 전파매질, 변환자 및 신호분석시스템을 수학적으로 모형화할 수 있는 기초를 마련하였다.

  • PDF

Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds (모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사)

  • Park, Dong-Myung;Kim, Hok-Joo;Yoon, Jae-Ryong;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • Rubber compounds have a high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate, and the amount of swelling varies with operational conditions in extrusion. It is well recognized that the elastic portion in the viscoelastic property plays an important role in the extrudate swell. In this study computer simulation of the die swell at the capillary die for several rubber compounds has been performed using commercial CFD code, Polyflow. A non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model, was used in the computer simulation. Non-isothermal behavior was considered in the calculation. Distribution of pressure, velocity and temperature in the reservoir and capillary die, and extrudate profiles were predicted through the simulation. The amount of the die swell fur the different rubber compounds was investigated for various flow rates and three types of length to diameter of the capillary die. It is concluded that the PTT model successfully represented viscoelastic behavior of rubber compounds.

Effects of Capillary Force on Salt Cementation Phenomenon (소금의 고결화 현상에서 모세관 효과)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • Salt cementation, a typical naturally-cemented phenomenon, may occur due to water evaporation under the change of climate. Capillary force may influence the distribution of cement in granular soils. This study addresses the effect of capillary force on salt cementation using five different techniques: cone penetration test, electrical conductivity measurement, photographic imaging technique, nondestructive imaging technique, and process monitoring by elastic wave. Glass beads modeling a particulate media was mixed with salt water and then dried in an oven to create the cementation condition. Experimental results show that salt cementation highly concentrates at the top of the small particle size specimens and at the middle or the bottom of the large particle specimens. The predicted capillary heights are similar to the locations of high salt concentration in the cemented specimens. Five suggested methods show that the behavior of salt-cemented granular media heavily depends on the capillary force.

Mechanical Behaviors of Electrospun Polyurethane Nonwoven (전기방사된 폴리우레탄 부직포의 기계적 물성에 관한 연구)

  • 이봉석;김학용;이근형;김민섭;류영준
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.376-377
    • /
    • 2003
  • 전기방사(electrospinning)는 최근 나노기술의 대두와 함께 서브마이크론(submicron)의 직경을 가지는 섬유를 제조할 수 있는 방법으로 활발한 연구가 진행되고 있는 실정이다[1]. 이러한 전기방사는 고분자 용액이나 용융된 고분자에 고전압을 걸어주어, 모세관 팁과 웹을 받아주는 컬렉터(collector) 사이에 전기장을 형성시켜 섬유를 제조하는 방법이다. 열가소성 폴리우레탄은 우수한 탄성을 갖는 유용한 고분자중의 하나로 섬유나 플라스틱에 널리 사용되고 있다. 특히, 이는 고무에 비하여 탄성률이 높고 내마모성이 강하며 용매에 대한 저항성이 좋은 장점을 지니고 있다[2]. (중략)

  • PDF

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

A Study on the Strength and Fracture Toughness of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 강도 및 파괴인성에 관한 연구)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.151-158
    • /
    • 1994
  • In this work, in order to inrprove the flexural strength of hardened portlarid cerncrit paste, mix ing water was reduced to water ccrnent ratio of 0.1 aid water soluble polymer such as hydroxy propyl methyl cellulose was adclelri to the paste to obtain a better dispersion. The paste was kneaded by the twin roll mill for cornpact and homogeneous mixing. The high strength mechanism of the hardened cement paste may be due to the removal of macropores larger than 100${\mu}m$, the reduction of capillary pores acting as the passage of crack propagation, the increase of Young's moculus with iticrease of unhytlratcci cenxxnt ard the incicasc of fracture toughnevs with the crack toughening mechanism (grain bridging, polymer fibril bridging and fritional inter-locking).

Effects of supplementary cementitious materials on drying shrinkage of cement mortar - a comparative study (혼화재에 따른 모르타르 건조수축-비교 연구)

  • Choi, Hoon Jae;Cui, Chengkui;Park, Chung-Hoon;Kim, Baek-Joong;Yi, Chongku;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.158-159
    • /
    • 2013
  • In this study, effects of supplementary cementitious materials(fly ash, blast furnace slag and waste glass) on drying shrinkage of cement mortar were compared and evaluated. The results showed drying shrinkage of cement mortar using blast furnace slag and waste glass is larger than shrinkage due to capillary pressure, while using fly ash is smaller.

  • PDF

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF