• Title/Summary/Keyword: 탄성률

Search Result 278, Processing Time 0.021 seconds

Preparation and Properties of Plasticized Cellulose Diacetate Using Triacetine/Epoxidized Soybean Oil (트리아세틴/ESO를 이용한 가소화 셀룰로오스 디아세테이트의 제조 및 물성)

  • Lee, Sang-Hwan;Lee, Sang-Yool;Lim, Hwan-Kyu;Nam, Jae-Do;Kye, Hyoung-San;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.202-206
    • /
    • 2006
  • The plasticized cellulose diacetate (CDA) was prepared by melt processing methods using triacetine (TA) as a plasticizer. Additionally, processability of CDA was enhanced by using epoxidized soybean oil as a secondary plasticizer. The glass transition temperature of plasticized CDA was observed at $50^{\circ}C$ lower than virgin CDA and the incorporation of 5% ESO also resulted in the additional $20^{\circ}C$ decrease in the $T_g$. The tensile properties and modulus of plasticized CDA were better than commercial PP and PLA. The aerobic biodegradability of CDA in controlled compositing condition resulted in 90% of degradation during 60 days.

Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites (계면활성제가 라텍스 블렌딩 폴리스티렌/단일벽 탄소나노튜브 나노복합재료의 유변학적, 전기적 물성에 미치는 영향)

  • Kang, Myung-Hwan;Noh, Won-Jin;Woo, Dong-Kyun;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.364-371
    • /
    • 2012
  • Polystyrene/single-walled carbon nanotube (PS/SWCNT) nanocomposites were prepared by latex technology and the effect of surfactant (SDS) on nanotube dispersion, rheological and electrical properties was investigated. The nanocomposites were prepared through freeze-drying after mixing PS particles and aqueous SWCNT/SDS suspension. As the SDS content increased, the storage modulus and complex viscosity of the nanocomposites were increased due to enhanced dispersion of nanotubes, but if the content excessively increased, the modulus and viscosity began to decrease due to low molecular weight of SDS. The electrical conductivity sharply increased with the addition of SDS, and then did not show significant changes. This result is speculated to be the competition between the increased dispersion of nanotubes and the deterioration of electrical conductivity by SDS adsorption. An optimal ratio of SDS to SWCNT for improving electrical conductivity and end-use properties was 2. With this ratio, the electrical percolation threshold of SWCNT was less than 1 wt%.

Rheological Properties of Poly(lactic acid) Modified by Electron Beam Irradiation (전자선 조사로 개질된 PLA의 유변학적 물성)

  • Shin, Boo-Young;Kim, Bong-Shik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.485-489
    • /
    • 2010
  • Poly(lactic acid)(PLA) has been modified by electron radiation in the presence of 5 phr glycidyl methacrylate (GMA) to enhance the melt strength of PLA. The modified PLA was prepared by varying the dose of irradiation and was characterized by observing the thermal properties, the melt viscoelastic properties and the gel fraction. The irradiated PLA with 300 kGy in the presence of 5 phr GMA showed drastically improved complex viscosity and storage modulus properties: a complex viscosity of about 210 times higher and a storage modulus of 14500 times higher than those of virgin PLA when measured at a frequency of 0.1 rad/s. Gel fraction study revealed that a branching reaction was more dominant than a crosslinking reaction when the PLA was irradiated with less than 200 kGy.

Improvement in Inorganic Affinity of Acrylic Materials for Conservation Treatment of Stone Cultural Assets (석조문화재를 위한 아크릴계 보존처리제의 무기친화성 개선)

  • Kim, Youn-Cheol;Kim, Un-Young;Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Applying acrylic silane monomer for determent of weathering damage of stone cultural assets from various sources was investigated to improve inorganic affinity of polymer impregnated to the stone for conservation treatment using impregnation of acrylic polymers under pressure. Radical polymerization was carried out with various mixture ratios of methacrylate (MMA), as the base monomer, and vinyl trimethoxy silane (VTMS). Subsequently, according to the changes of glass transition temperatures, average molecular weights, and storage moduli of the obtained copolymers, the case of adding 1 wt% of benzoyl peroxide, polymerization for 8 hrs, and mixing 5 mol% of VTMS to MMA was the optimum condition of monomer ratio and polymerization. Practically, fresh granites collected in domestic site and weathered stones were treated by following the obtained result above, and then, the moisture absorption, impact, acid resistance, and adhesion properties of the treated stones were compared to those of the corresponding stones treated with MMA only. It was found that those properties of the stones treated with PMV5 were considerably improved.

Evaluation of Concentration Polarization at Feed in the Permeation of VOCs/$N_2$ mixtures through PDMS membrane (VOCs/질소 혼합물 증기투과시 공급액부 경계층에서의 농도분극 분석을 위한 모델식 확립)

  • 염충균;이상학;최정환;이정민
    • Membrane Journal
    • /
    • v.11 no.2
    • /
    • pp.74-82
    • /
    • 2001
  • By using a phenomenological approach, model equations incorporating the resistance-in¬series concept were established to evaluate quantitatively concentration polarization in the boundary layer in feed adjacent to the membrane surface in the vapor permeation and separation of volatile organic compounds (VOCS)/$N_2$ mixture through po]y(dimethylsiloxane) (PDMS) membrane. The vapor permeations of various VOCS/$N_2$ mixtures through PDMS membrane were carried out at various feed flow rates. Chlorinated hydrocarbons, such as, methylene chloride, chlorofonn, 1,2-clichloroethane and 1,1,2-trichloroethane were used as organic vapor. By fitting the model equations to the experimental penneation data. the model parameters were detennined. respectively. Both the mass transfer coefficient of VOC across tbe boundary layer and concentration polarization modulus as a measure of the extent of concentration polarization were eitimated Quantitatively by the mooe1 equations with the determined model parameters. From the analysis on the detennined model parameters, the boundary layer resistance due to the concentration polarization of VOCs component was found to be more significant when the condensability of voe was greater. This study seeks to emphasize the importance of the boundary resistance on the vapor penneation of the vapor/gas mixtures with high permeability and high selectivity towards the minor component VOC.

  • PDF

Elastic Properties of the $CaSiO_3$ - Garnet Phase ($CaSiO_3$- 석류석 상의 탄성 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • $CaSiO_3$-garnet phase was observed in the phase transformation sequences on a natural hedenbergite, (Ca, Fe)$ SiO_3$ between 14 and 24 GPa when quenched from $~1200^{\circ}C$. Bulk modulus K = 155 GPa, $V_{\Phi}$ = 6.58 km/sec and other elastic properties of the $CaSiO_3$-garnet were obtaiend on the basis of the systematics of structural analogs in varius garnet phases and relationship of $KV_{m}$ = constant and $V_{\Phi}$$M^{$\frac{1}{2}$}$ = constant. The quenchable garnet phase apears to be stabilized by the considerable amount of Mn and other cations, and shows a wide stability range. As one of the host minerals of Ca composition, $CaSiO_3$-garnet would be one of the important mineral phases in the mantle transition region.

Morphology and Physical Properties of EPDM Composites Containing Bottom Ash and Talc (EPDM/Bottom Ash 복합재료의 형태학 및 물리적 특성)

  • Kim, Yeongho;Shim, Hyunseok;Lee, Minho;Min, Byong Hun;Kim, Jeong Ho
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.272-278
    • /
    • 2013
  • Ethylene propylene diene terpolymer (EPDM) has been usually used for various applications. Bottom ash generated in thermoelectric power plant is hardly recycled. In this study, EPDM/bottom ash/talc composites were prepared by using roll-mill. Bottom ashes obtained from thermoelectric power plant were modified using surfactant. The processing materials used in this study were antioxidant, processing oil, cross-linking co-agent and softening agent. Morphology and physical properties of EPDM composites are investigated by using SEM, TGA, UTM and Rheometer. As a result, when modified ash and talc are added to EPDM composites, the tensile strength and modulus of EPDM composites were remarkably enhanced.

Effects of Orientation on Properties of Solid-State Extruded Polypropylene/Calcium Carbonate Composites (고상압출로 제조된 폴리프로필렌/탄산칼슘 복합재료의 물성에 미치는 배향의 영향)

  • Lee, Jaechoon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.175-182
    • /
    • 2013
  • In this work, we aim to investigate the specific gravity, thermal, and mechanical property changes of solid-state extruded polypropylene (PP)/calcium carbonate composites before and after orientation. For this work, we prepared $PP/CaCO_3$ composites having two different sizes (OM-1 and OM-10). On increasing the filler content, the specific gravity of the composites increases. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more microvoids. The presence of microvoids in case of oriented composite specimen significantly affected the tensile and flexural properties of the composites. It was observed that the effect of orientation on both flexural strength and modulus is much stronger than the effect of filler contents, regardless of the filler particle size.

Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber (단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of fiber aspect ratio(AR), diameter ratio(DR), interphase condition, and fiber content. The tensile strength increased with increasing fiber AR(20 min.) and good interphase conditions. The short-fiber(DR=3 and AR=20 min.) reinforced SBR did not show the dilution effect for all interrhase conditions. And the short-fiber(DR=3 and AR=20min.) reinforced NR did not show the dilution effect except for the no-coating. The tensile moduli were significantly improved due to fiber AR. fiber content, and good interphase at same DR. The better interphase condition showed the higher pull-out force at same DR. Also, the stress analysis near the fiber end carried out using axisymmetric FEA to be convinced of the reinforcing mechanism. It is found that the fiber AR, interphase and DR have an important effect on tensile properties.

Crosslinking reaction system of polymers (고분자 가교반응 시스템)

  • Ko, Jong-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-32
    • /
    • 2012
  • Pharmaceutical use accounts for a great part of articles and papers on crosslinking of polymers. Crosslinking of polymers used for tissue engineering and drug delivery respects non-cytotoxicity and in situ gelling. The crosslinking of polymers is aimed not only at the improvement of modulus, chemical resistance, and thermal resistance, but also at endowing them with such functions as metal adsorption, antifouling, and ion exchange via crosslinked segments. Smart polymers responding to environmental change, and cosslinking mediated by light, enzyme, natural compound and in aqueous medium in consideration of environment are being studied. Developing new polymeric materials is essential along with the pharmaceutics aiming at the longevity of 120 years old. Functionalization and property adjustment of polymers through crosslinking will be done more delicately. Hydrogels will be focused on injectable and in situ gel forming. In the coating industry crosslinking system with low non-toxicity and low energy consumption will be developed in consideration of workers and environment.