Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.3.364

Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites  

Kang, Myung-Hwan (Department of Polymer Engineering, The University of Suwon)
Noh, Won-Jin (Department of Polymer Engineering, The University of Suwon)
Woo, Dong-Kyun (Department of Polymer Engineering, The University of Suwon)
Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.36, no.3, 2012 , pp. 364-371 More about this Journal
Abstract
Polystyrene/single-walled carbon nanotube (PS/SWCNT) nanocomposites were prepared by latex technology and the effect of surfactant (SDS) on nanotube dispersion, rheological and electrical properties was investigated. The nanocomposites were prepared through freeze-drying after mixing PS particles and aqueous SWCNT/SDS suspension. As the SDS content increased, the storage modulus and complex viscosity of the nanocomposites were increased due to enhanced dispersion of nanotubes, but if the content excessively increased, the modulus and viscosity began to decrease due to low molecular weight of SDS. The electrical conductivity sharply increased with the addition of SDS, and then did not show significant changes. This result is speculated to be the competition between the increased dispersion of nanotubes and the deterioration of electrical conductivity by SDS adsorption. An optimal ratio of SDS to SWCNT for improving electrical conductivity and end-use properties was 2. With this ratio, the electrical percolation threshold of SWCNT was less than 1 wt%.
Keywords
nanocomposite; carbon nanotube; dispersion; rheology; electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 N. Grossiord, M. E. L. Wouters, H. E. Miltner, K. Lu, J. Loos, B. V. Mele, and C. E. Koning, Eur. Polym. J., 46, 1833 (2010).   DOI   ScienceOn
2 M. H. Kang, W. J. Noh, and S. J. Lee, Polymer(Korea), 35, 451 (2011).
3 A. G. Ryabenko, T. V. Dorofeeva, and G. I. Zvereva, Carbon, 42, 1523 (2004).   DOI   ScienceOn
4 R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, J. Colloid Interface Sci., 328, 421 (2008).   DOI   ScienceOn
5 J. L. Ou, J. K. Yang, and H. Chen, Eur. Polym. J., 37, 789 (2001).   DOI   ScienceOn
6 P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004).   DOI   ScienceOn
7 S. Huang, M. Wang, T. Liu, W. D. Zhang, W. C. Tjiu, C. He, and X. Lu, Polym. Eng. Sci., 49, 1063 (2009).   DOI   ScienceOn
8 F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004).   DOI   ScienceOn
9 E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, Phys. Rev. E, 52, 819 (1995).   DOI   ScienceOn
10 G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang, Polymer, 47, 480 (2006).   DOI   ScienceOn
11 Y. Bin, M. Kitanaka, D. Zhu, and M. Matsuo, Macromolecules, 36, 6213 (2003).   DOI   ScienceOn
12 P. J. F. Harris, Inter. Mater. Rev., 49, 31 (2004).   DOI   ScienceOn
13 Z. Yang, B. Dong, Y. Huang, L. Liu, F. Y. Yan, and H. L. Li, Mater. Chem. Phys., 94, 109 (2005).   DOI   ScienceOn
14 J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007).   DOI   ScienceOn
15 P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212 (1994).   DOI   ScienceOn
16 H. Wang, W. Zhou, D. L. Ho, K. I. Winey, J. E. Fischer, C. J. Glinka, and E. K. Hobbie, Nano Lett., 4, 1789 (2004).   DOI   ScienceOn
17 Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, J. Am. Chem. Soc., 125, 16015 (2003).   DOI   ScienceOn
18 J. Y. Shin, T. Premkumar, and K. E. Geckeler, Chem. Eur. J., 14, 6044 (2008).   DOI   ScienceOn
19 J. L. Bahr, J. P. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, J. Am. Chem. Soc., 123, 6536 (2001).   DOI   ScienceOn
20 D. K. Woo and S. J. Lee, Korea-Australia Rheol. J., 22, 219 (2010).
21 S. Y. Lee and S. J. Park, Bull. Korean Chem. Soc., 31, 1596 (2010).   DOI   ScienceOn
22 V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, Nano Lett., 3, 1379 (2003).   DOI   ScienceOn
23 M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).   DOI   ScienceOn
24 Z. Zhang, J. Zhang, P. Chen, B. Zhang, J. He, and G. H. Hu, Carbon, 44, 692 (2006).   DOI   ScienceOn
25 H. J. Barraza, F. Pompeo, A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002).   DOI   ScienceOn
26 J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007).   DOI   ScienceOn
27 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985).   DOI
28 S. Iijima, Nature, 354, 56 (1991).   DOI
29 M. M. J. Treacy, T. W. Ebbsen, and J. M. Gibson, Nature, 381, 678 (1996).   DOI   ScienceOn
30 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B, 58, 14013 (1998).   DOI