• Title/Summary/Keyword: 탄성구조물

Search Result 872, Processing Time 0.031 seconds

Evaluation of the Second Order Analysis of Asymmetric Unbraced Frame by using Load Amplification Factor (하중증폭계수를 적용한 비대칭 비가새 골조 2차 해석 평가)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.87-97
    • /
    • 2010
  • The purpose of this study was to evaluate the validity of the second-order analysis for asymmetric unbraced frame using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factors suggested by KBC 2009 were performed for five story - two bay and five story - four bay asymmetric unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the shape of the frame, the axial load ratio of the column, the methods of analysis and the location of column. The research results show that the asymmetric shape of the frame deteriorates the validity of the factor B2 and the suggested methods. The range of error is increased in case of irregular or inclined column.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatures (조선 해양 구조물용 강재의 소성 및 파단 특성 IV: 고온 기계적 물성치에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • This is the fourth of a series of companion papers dealing with the mechanical property reductions of various marine structural steels. Even though a reduction of the elastic modulus according to temperature increases has not been obtained from experiments, high temperature experiments from room temperature to $900^{\circ}C$ revealed that initial the yield strength and tensile strength are both seriously degraded. The mechanical properties obtained from high temperature experiments are compared with those from EC3 (Eurocode 3). It is found that the high temperature test results generally comply with the prediction values by EC3. Based on the prediction of EC3, time domain nonlinear finite element analyses were carried out for a blast wall installed on a real FPSO. After applying the reduced mechanical properties, corresponding to $600^{\circ}C$ to the FE model of the blast wall, more than three times the deflections were observed and it was observed that most structural parts experience plastic deformations exceeding the reduced yield strength at the high temperature. It is noted that a protection facility such as PFP (passive fire protection) should be required for structures likely to be directly exposed to fire and explosion accident.

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Dynamic Behavior of Unsaturated Decomposed Granite Soils under Low Shear Strain Amplitude (저전단변형율에서의 불포화화강풍화토의 동적 거동)

  • Huh, Kyung-Han;Baek, Joong-Yuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.57-63
    • /
    • 2005
  • In case of general structures, it has been known that the strain amplitude band experienced by the base in a state of service load is less than 1% and most of the base show low, strain amplitude behavior less than 0.01%. In this study examining the influence affected to dynamic behavior in a condition of the low strain amplitude of unsaturated decomposed granite soils, the resonant column test, using some samples in Su-won area, has been performed for each degree of saturation resulted from different void ratios and confined stress. It is found out that the minimum value of the damping ratio occurred in roughly $17{\sim}18%$ according to void ratios regardless of confined pressure in the same manner with the case of the maximum shear elastic modulus; and it is estimated that for the influence of surface tension in the optimum degree of saturation, the damping ratio appears to be least.

Inelastic Behavior of Standard School Building according to Hysteresis Models (이력모델에 따른 표준학교건물의 비탄성거동 연구)

  • Je, Jeong-Hyun;Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.838-845
    • /
    • 2009
  • The inelastic response characteristics of the standard school buildings depending on selection of hysteresis models are reviewed. Three earthquake records of El-centre, Santa-Monica, Taft and three artificial earthquake records in accordance with Korea standard are used and the inelastic response characteristics such as story shear force, story drift ratio, story displacement, hinge distribution state are reviewed with various hysteresis models. As results, story shear force is increased by maximum 60% according to hysteresis model. And Story drift ratio is increased by maximum 42% according to hysteresis model. And The result with clough model shows the maximum hinge distribution state.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Modal Properties of a Tall Reinforced Concrete Building Based on the Field Measurement and Analytical Models (실측 및 해석모델에 의한 철근콘크리트조 주상복합건물의 모드특성)

  • Kim, Ji-Young;Kim, Ju-Yeon;Kim, Mi-Jin;Yu, Eun-Jong;Kim, Dae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.289-296
    • /
    • 2009
  • Natural frequency is a key parameter to determine the seismic and wind loading of tall flexible structures, and to assess the wind-induced vibration for serviceability check. In this study, natural frequencies and associated mode shapes were obtained from measured acceleration data and system identification technique. Subsequently, finite element(FE) models for a tall reinforced concrete buildings were built using a popular PC-based finite element analysis program and calibrated to match their natural frequencies and mode shapes to actual values. The calibration of the FE model included: 1) compensation of modulus of elasticity considering the mix design strength, 2) flexural stiffness of floor slabs, and 3) major non-structural components such as plain concrete walls. Natural frequencies and mode shapes from the final FE model showed best agreement with the measured values.

Evaluation of Plastic Rotational Capacity Based on Material Characteristics in Reinforced Concrete Flexural Members (재료 특성에 기반한 철근콘크리트 휨부재의 소성회전능력 산정)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • Although a critical section reaches its flexural strength in reinforced concrete structures, the structure does not always fail because moment redistribution occurs during the formation of plastic hinges. Inelastic deformation in a plastic hinge region results in plastic rotation. A plastic hinge mainly depends on material characteristics. In this study, a plastic hinge length and plastic rotation are evaluated using the flexural curvature distribution which is derived from the material models given in Eurocode 2. The influence on plastic capacity the limit values of the material model used, that is, ultimate strain of concrete and steel and hardening ratio of steel(k), are investigated. As results, it is appeared that a large ultimate strain of concrete and steel is resulting in large plastic capactiy and also as a hardening ratio of steel increases, the plastic rotation increases significantly. Therefore, a careful attention would be paid to determine the limit values of material characteristics in the RC structures.

Horizontal Cracks in Continuously Reinforced Concrete Pavement Structures (연속철근콘크리트 도로포장 구조물의 내부 수평균열)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.425-429
    • /
    • 2006
  • Horizontal cracks at the mid-depth of concrete slabs were observed at a section of the continuously reinforced concrete pavement(CRCP) structures on the Korea Highway Corporation's Test Road. To investigate the existence and the extent of horizontal cracks in the concrete slab, a number of cores were taken from the section of CRCP. To identify the causes of horizontal cracks, numerical analyses were conducted. Several variables relative to design, material, and environment were considered in the studies to evaluate possible causes of horizontal cracking. A numerical model of CRCP was developed using the finite element discretization, and the shear and normal tensile stress distributions in CRCP were investigated with the model. Numerical analysis results show that the maximum shear and normal tensile stresses develop near the depth of steel bars at transverse cracks. If those maximum stresses reach the strength of concrete, horizontal cracks occur. The maximum stresses become higher as the environmental loads, coefficient of thermal expansion of concrete, and elastic modulus of concrete increase.