• Title/Summary/Keyword: 탄산염

Search Result 651, Processing Time 0.155 seconds

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3 (탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성)

  • Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Tae-Kyo;Cho, In-Hak;Kim, Na-Young;Yu, Jae-Uk;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • It is necessary to develop an effective waste salt treatment technology for the minimization of radioactive waste generation from the pyroprocessing of spent nuclear fuel. For this reason, the separation characteristics of NdCl3 from LiCl-KCl eutectic salt in a reactive distillation process using Li2CO3 or K2CO3 were observed. NdCl3 was converted into oxychloride (NdOCl) or oxide (Nd2O3) in the reaction model between NdCl3 and the carbonates using HSC-Chemistry, and this result was confirmed in the reactive distillation test of the LiCl-KCl-NdCl3 system using the carbonates. Based on these results, the reactive distillation process conditions were determined to separate NdCl3 into an oxide form (Nd2O3) which can be easily fabricated into a final waste form.

Effects of Alkaline Reagent on the Rheological Properties of Wheat Flour and Noodle Property (알칼리제가 밀가루의 리올로지와 국수의 성질에 미치는 영향)

  • Kim, Sung-Kon;Kim, Heung-Rae;Bang, Jung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The effects of sodium carbonate (Na), potassuim carbonate (K) and their mixtures (Na/K=0.7-2.0) on pasting properties by amylograph and mixing properties by farinograph of wheat flour (9.45% protein), and of alkali mixtures (0.16%) on noodle property were examined. The concentrations of alkali used were 0.08%, 0.10% and 0.16% based on flour weight (14% mb). The salt (1.7%) and alkali decreased the initial pasting temperature but increased the amylograph peak viscosity. The peak viscosity increased with the increase of alkali concentration, but the mixing ratio at a fixed concentration had no effect on peak viscosity. The farinograph absorption decreased by salt, but the effect of salt diminished in the presence of alkali. The salt and alkali increased the farinograph stability, of which the former was more pronounced. The effect of alkali alone and mixtures in the presence of salt on amylograph and farinograph were essentially the same regardless the concentrations and mixing ratios. The yellowness and breaking force of dry noodle prepared with salt and alkali was higher than that prepared with salt only. The weight and volume gain of the optimum cooked noodle remained essentially constant, but the shear force and compression force were increased by the alkali.

  • PDF

The Effect of Yttrium on Corrosion Behavior of NiAl Intermetallic Compound in the Molten Carbonate Salt (용융탄산염내에서의 NiAl합금의 내식성에 미치는 Yttrium의 첨가 영향)

  • Hwang, Eung-Rim;Lee, Dae-Hui;Kim, Seon-Jin;Kang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.685-692
    • /
    • 1998
  • Since a wet-seal area of Molten Carbonate Fuel Cell (MCFC) operated at $650^{\circ}C$ is exposed to severe environment, a life-time of MCFC is influenced by the corrosion resistance of separator. In order to improve corrosion resistance of 316L stainless steel used as separator material, AI- base alloy such as NiAI has been widely used as coat¬ing material on the wet-seal area. The purpose of this work is to develope a more protective coating material by adding yttrium on NiAI alloy. An immersion test and a polarization test were performed in molten carbonate salt at $650^{\circ}C$ to estimate corrosion resistance of the NiAI alloy and the NiAl/Y alloys with up to L5at% yttrium. NiAl/Y alloys showed better corrosion resistance than NiAI alloy. We found that more than 0.7 at% yttrium was required to improve the corrosion resistance of NiAI alloy in molten carbonate salt at $650^{\circ}C$.

  • PDF