기존의 탄도방정식[2]에서 여러 조건을 제시하여 간략화된 대공화기 탄도방정식을 얻는다. 대공화기의 탄도궤적이므로 양력계수가 들어간 항의 값이 충분히 작다는 가정을 하였다. 또한 속도의 크기를 시간불변이라는 가정을 하였다. 이 탄도방정식은 기존의 방정식[1]에 비하여 밀도, 풍속, 항력계수 및 탄도계수가 식에 나타나 있어 일반적인 탄도방정식으로 이용가능하고 또한 미분방정식의 해를 구할 필요가 없다. 모의실험을 통하여 제시된 탄도방정식을 이용하여 풍속이 들어간 탄도궤적을 구한다.
군에서 사용하는 탄약의 보관 및 취급상 발생할 수 있는 외형결함을 가정하여 그것이 사거리에 미치는 영향을 예측하였다. 외형결함은 탄체두부의 오자이브 형상에 각 1.5mm, 3.3mm의 축대칭 함몰부가 생기는 것으로 가정하였다. FLUENT를 사용하여 마하수 별 항력계수를 해석하였고, 탄도해석 프로그램인 PRODAS에 항력계수 데이터를 입력하여 탄도해석을 하였다. 공력해석결과 1.5mm, 3.3mm 함몰 탄체의 항력증가율은 정상탄체와 비교했을 때 아음속 영역에서는 큰 차이를 보이지 않았으나, 초음속 영역에서 각각 평균 3%, 9% 의 증가율을 보였다. 최대 사거리는 포구속도 650m/s를 기준으로 각각 1%, 3% 감소한 결과를 보였다.
본 논문에서는 IMM 필터 기반으로 장사정포의 탄종을 식별하고 탄착점을 신속하게 예측하는 알고리즘을 제시한다. 탄도궤적 방정식을 시스템 모델로 사용하고, 각각 다른 탄도계수 값을 갖는 3가지 모델을 IMM 필터에 적용한다. 가속도를 중력, 공기저항, 양력에 의한 3가지 성분으로 나누고 양력가속도를 새로운 상태변수로 추가하여 추정한다. 속도벡터와 양력가속도가 수직이라는 운동학 조건을 유사 측정값으로 추가한 측정방정식을 다룬다. IMM 필터를 통해 추정된 상태변수와 모드 확률이 가장 높은 모델의 탄도계수를 기반으로 탄착점을 예측한다. 탄착점 예측을 위해 일반적으로 사용되는 룽게-쿠타 수치적분 대신, 준해석적인 방법을 사용하여 적은 계산량으로 탄착점을 예측할 수 있음을 설명한다. 마지막으로 최소제곱법을 이용한 상태변수 초기화 방법에 대해 제안하고 성능을 확인하였다. 탄종식별, 탄착점 예측 및 초기화를 포함한 통합 알고리즘을 제시하고 시뮬레이션을 통해 제안한 방법의 타당성을 검증하였다.
To make a firing table of artillery with trajectory simulation, a precise trajectory model which corresponds with real firing test is required. Recent 4-DOF modified point mass trajectory model is considered accurate as a theoretical model, but fitting coefficients are used in calculation to match with real firing test results. In this paper, modified point mass trajectory model is presented and method of setting ballistic coefficient is introduced by applying optimization algorithms. After comparing two different algorithms, Particle Swarm Optimization and Covariance Matrix Adaptation - Evolutionary Strategy, we found that using CMA-ES algorithm gives fine optimization result. This fitting coefficient setting method can be used to make trajectory simulation which is required for development of new projectiles in the future.
본 논문은 비행시험의 결과를 이용하여 항력 및 항력감소 분석을 위한 항력계수 산출기법에 대하여 기술하였다. 2차원 탄도운동방정식의 역산을 통하여 비행시험을 이용한 항력계수 산출방법에 대하여 정리하였으며 155 mm 탄의 비행시험을 통하여 이론적인 항력계수와 시험결과로부터 산출된 항력계수를 비교하여 항력계수 산출 기법에 대한 검증을 수행하였다. 항력감소제가 적용된 탄의 비행시험결과를 이용하여 항력계수 산출 및 항력감소 양상을 분석하였다.
A recent air defense missile system(ADMS) is required to have a capability to intercept super-high speed targets such as tactical ballistic missiles(TBMs) by performing engagement control efficiently. The air defense missile system should be ready to engage the TBMs as soon as the ADMS detects TBMs because falling velocity of TBM is very high and remaining time interval to engage TBM is very short. As a result, the ADMS has to predict the trajectories of TBMs accurately with estimated states of dynamics to generate predicted intercept point(PIP). In addition, it is needed to engage TBMs accurately via transmitting the obtained PIP data to the corresponding intercept missiles. In this paper, an analysis about the relationship between ballistic coefficient and PIP accuracy which is depending on geodetic height of the first detection of TBM is included and an issue about effective engagement control for the TBM is considered.
화포에서 탄저 압력이 포미 압력 보다 높은 역압력 구배가 발생하면 화포에 잠재적인 충격이 증가하는 것으로 알려져 있다. 화포의 안전성을 확보하기 위해 발사 과정에서 이 역압력 구배를 최소화시키는 설계가 필요하다. 이에 수치 해석을 통해 점화제 연소율이 역압력 구배에 미치는 영향을 조사하였다. 점화제 연소율 상수가 증가할수록 역압력 구배는 증가하였고, 특정 연소율 계수에서 급격한 압력변동이 발생하였다.
본 논문은 2021년 5월에 수행된 국제우주쓰레기조정위원회(IADC, Inter-Agency Space Debris Coordination Committee Reentry) 재진입 테스트 캠페인의 분석 대상인 중국 창정 5B호 발사체의 재진입 시점 예측 분석 내용을 포함하고 있다. 우주물체의 재진입 예측은 물체의 크기나 무게, 자세에 대한 정확한 정보의 부재, 대기밀도의 불확실성 등으로 정확한 예측이 어렵다. 때문에 IADC에서는 재진입 캠페인을 매년 수행하여 기관별 분석기법에 대한 검증을 수행하고 있고, 한국항공우주연구원에서도 2015년부터 이에 참여하고 있다. 본 연구에서는 우주물체가 재진입하는 시점을 예측하기 위해 탄도계수 최적화 기법을 제안하였고, 이를 활용하여 분석 대상의 재진입 시점을 예측한 결과, 실제 재진입 시점과 약 73초의 차이를 보여주어 제안한 기법의 정확도를 확인하였다.
연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.
논문은 심탄도(BCG, Ballistocardiogram) 센서를 이용하여 생체신호 데이터를 비침습, 무구속적인 방식으로 수집하고, ICT 기술과 고성능 컴퓨팅 환경에서 인공지능 기계학습 알고리즘을 활용하여 데이터 기반 혈당 예측 알고리즘 모델 개발 및 검증하는 방법을 제시하고 연구하는 것이다. 혈당수치 예측모델은 MLP 아키텍처에 입력노드는 심박수, 호흡수, 심박출량, 심박변이도, SDNN, RMSSD, PNN50, 나이, 성별이며, 은닉층 7개를 사용하였다. 실험 결과는 5회 실험한 학습데이터의 평균 MSE, MAE 및 RMSE 값은 각각 0.5226, 0.6328 및 0.7692이며 검증데이터 평균 값은 각각 0.5408, 0.6776, 0.7968이었으며, 결정계수(R2) 수치는 0.9997의 결과를 보였다. 데이터를 기반으로 한 혈당수치를 예측하는 모델을 표준화하고 데이터셋 수집과 예측 정확성을 검증하는 연구가 계속적으로 진행된다면 비침습 방식의 혈당 수준 관리에 활용될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.