DOI QR코드

DOI QR Code

Analysis of Reentry Prediction of CZ-5B Rocket Body

창정 5B호 발사체의 재진입 시점 예측 분석

  • Received : 2021.07.30
  • Accepted : 2021.08.14
  • Published : 2021.08.31

Abstract

This paper represents a reentry time prediction analysis of CZ-5B rocket-body in China, subject to analysis of the Inter-Agency Space Debris Coordination Committee Reentry (IADC) reentry test campaign conducted in May 2021. Predicting the reentry of space objects is difficult to accurately predict due to the lack of accurate physical information about target, and uncertainty in atmospheric density. Therefore, IADC conducts annual re-entry campaigns to verify analysis techniques by each agency, and the Korea Aerospace Research Institute has also participated in them since 2015. Ballistic coefficient estimation method proposed to predict target reentry time and the result confirmed the difference of 73 seconds, which confirms the accuracy of the proposed method.

본 논문은 2021년 5월에 수행된 국제우주쓰레기조정위원회(IADC, Inter-Agency Space Debris Coordination Committee Reentry) 재진입 테스트 캠페인의 분석 대상인 중국 창정 5B호 발사체의 재진입 시점 예측 분석 내용을 포함하고 있다. 우주물체의 재진입 예측은 물체의 크기나 무게, 자세에 대한 정확한 정보의 부재, 대기밀도의 불확실성 등으로 정확한 예측이 어렵다. 때문에 IADC에서는 재진입 캠페인을 매년 수행하여 기관별 분석기법에 대한 검증을 수행하고 있고, 한국항공우주연구원에서도 2015년부터 이에 참여하고 있다. 본 연구에서는 우주물체가 재진입하는 시점을 예측하기 위해 탄도계수 최적화 기법을 제안하였고, 이를 활용하여 분석 대상의 재진입 시점을 예측한 결과, 실제 재진입 시점과 약 73초의 차이를 보여주어 제안한 기법의 정확도를 확인하였다.

Keywords

Acknowledgement

본 연구는 한국항공우주연구원의 위성임무관제사업의 지원을 받아 수행되었습니다.

References

  1. Celestrak, SATCAT Boxscore (2021) [Internet], viewed 2021 Aug 8, available from: https://celestrak.com/satcat/boxscore.php
  2. Sgobba T, Space debris re-entries and aviation safety, in International Association for the Advancement of Space Safety 2013 Conference, Montreal, QU, 21-23 May 2013.
  3. Portree DSF, Loftus JP Jr., Orbital debris: A chronology, NASA Technical Report, NASA/TP-1999-208856, NAS 1.60:208856, S-843 (1999).
  4. Patera RP, Ailor WH, The realities of reentry disposal, Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Monterey, CA, 9-11 Feb 1998.
  5. Rochelle WC, Kinsey RE, Reid EA, Reynolds RC, Johnson NL, Spacecraft orbital debris reentry: aerothermal analysis, in 8th Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design, Houston, TX, 8-11 Sep 1997.
  6. Refling O, Stern R, Potz C, Review of orbital reentry risk predictions, Aerospace Report, ATR-92(2835)-1 (1992).
  7. Hanafee JE, Analysis of beryllium parts for Cosmos 954, Lawrence Livermore Laboratory Report, UCRL-52597 (1978).
  8. Nguyen H, Estimation of the Cosmos 954 break-up altitudes, The Aerospace Corporation Report, A85-5752.6-44 (1985).
  9. Szewczyk NJ, Mancinelli RL, McLamb W, Reed D, Blumberg BS, et al., Caenorhabditis elegans survives atmospheric breakup of STS-107, Space Shuttle Columbia. Astrobiology. 5, 690-705. (2005). https://doi.org/10.1089/ast.2005.5.690
  10. Klinkrad H, Fritsche B, Lips T. Koppenwallner G, Re-entry prediction and on-ground risk estimation, Space Debris - Models and Risk Analysis, ed. Klinkrad H (Springer Praxis, Chichester, 2006), 241-288.
  11. Pardini C, Anselmo L, Re-entry predictions for uncontrolled satellites: results and challenges, Proceedings of the 6th IAASS Conference-Safety is Not an Option, Montreal, QU, 21-23 May 2013.
  12. Anilkumar AK, Ananthasayanam MR, Subba Rao PV, A constant gain Kalman filter approach for the prediction of re-entry of risk objects, Acta. Astronaut. 61, 831-839 (2007). https://doi.org/10.1016/j.actaastro.2007.01.063
  13. Pardini C, Anselmo L, On the accuracy of satellite reentry predictions, Adv. Space Res. 34, 1038-1043 (2004). https://doi.org/10.1016/j.asr.2003.01.010
  14. Pardini C, Anselmo L, Impact of the time span selected to calibrate the ballistic parameter on spacecraft re-entry predictions, Adv. Space Res. 41, 1100-1114 (2008). https://doi.org/10.1016/j.asr.2007.11.013
  15. Yurasov VS, Nazarenko AI, Alfriend KT, Cefola PJ, Reentry time prediction using atmospheric density corrections, J. Guid. Control Dyn. 31, 282-289 (2008). https://doi.org/10.2514/1.26593
  16. Dodin P, Minvielle P, Le Cadre JP, Estimating the ballistic coefficient of a re-entry vehicle. IET Radar Sonar Nav. 1, 173-183 (2007). https://doi.org/10.1049/iet-rsn:20060064
  17. Reyhanoglu M, Alvarado J, Estimation of debris dispersion due to a space vehicle breakup during reentry, Acta. Astronaut. 86, 211-218 (2013). https://doi.org/10.1016/j.actaastro.2013.01.018
  18. Pardini C, Anselmo L, USA-193 decay predictions using public domain trajectory data and assessment of the post-intercept orbital debris cloud, Acta. Astronaut. 64, 787-795 (2009). https://doi.org/10.1016/j.actaastro.2008.12.007
  19. Audet C, Dennis JE Jr., Analysis of generalized pattern searches, SIAM J. Optim. 13, 889-903, (2002). https://doi.org/10.1137/S1052623400378742
  20. FR24 News, Huge Chinese Long March 5B rocket drops from orbit over the Atlantic Ocean - Spaceflight Now (2021) [Internet], viewed 2021 Aug 8, available from: https://www.fr24news.com/a/2020/05/huge-chinese-long-march-5b-rocket-drops-from-orbit-over-the-atlantic-ocean-spaceflight-now.html
  21. Space-Track, TLE data download (2021) [Internet], viewed 2021 Feb 20, available from: https://www.spa ce-track.org