• Title/Summary/Keyword: 탄도궤적

Search Result 29, Processing Time 0.03 seconds

A Study on the Bullet Trajectory for the Anti-aircraft Gun (대공화기 탄도궤적에 관한 연구)

  • Kang, Hwan-Il;Park, Kang;Shin, Dong-Il;Park, Woo-Seong;Joo, Gee-Don
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.117-119
    • /
    • 2012
  • 기존의 탄도방정식[2]에서 여러 조건을 제시하여 간략화된 대공화기 탄도방정식을 얻는다. 대공화기의 탄도궤적이므로 양력계수가 들어간 항의 값이 충분히 작다는 가정을 하였다. 또한 속도의 크기를 시간불변이라는 가정을 하였다. 이 탄도방정식은 기존의 방정식[1]에 비하여 밀도, 풍속, 항력계수 및 탄도계수가 식에 나타나 있어 일반적인 탄도방정식으로 이용가능하고 또한 미분방정식의 해를 구할 필요가 없다. 모의실험을 통하여 제시된 탄도방정식을 이용하여 풍속이 들어간 탄도궤적을 구한다.

Analysis of Flight Trajectory Characteristics of Ballistic Missiles Considering Effects of Drag Forces (항력을 고려한 탄도미사일 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • This paper analyzed flight trajectory characteristics of ballistic missiles considering effects of drag forces. It is difficult to intercept ballistic missiles which fly over atmosphere with supersonic speeds and small radar cross section (RCS). In particular, the velocities in the phases of boost and terminal are changed significantly due to the steep variation of the drag force. Therefore, in order to build up a successful ballistic missile defense systems, the effects of the drag forces should be considered in the analysis of ballistic missile trajectory characteristics. In this point of view, this work analyzed the effects of drag forces and derived the flight trajectory characteristics of Scud B, C and Nodong missiles. Model of the ballistic missile flight trajectory is considered the effects of Coriolis and centrifugal forces, and specifications of the missiles are open sources.

Analysis of the Flight Trajectory Characteristics of Ballistic Missiles (탄도미사일의 비행궤적 특성 해석)

  • Kwon, Yong-Soo;Choi, Bong-Suk
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.1
    • /
    • pp.176-187
    • /
    • 2006
  • It is difficult to estimate missile flight trajectory since a ballistic missile velocity is highly fast and has inherent behavior such as corkscrew due to unstable descending. This paper describes a comprehensive analysis of the flight trajectory characteristics of ballistic missiles. Various missile flight ranges based the comprehensive flight trajectory characteristics are derived by an analytical approach. It is shown analytically that threat due to the flight characteristics is significantly increased with reducing maximum missile ranges. This work is basic research of the establishment of operational concept for the lower tier missile defense system implementation.

Analysis of the Flight Trajectory Characteristics of North Korea SLBM (북한 SLBM의 비행특성 해석)

  • Lee, Kyoung-Haing;Seo, Hyeong-Pil;Kwon, Yong-Soo;Kim, Jiwon
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • This research focuses on analysis of the flight trajectory characteristics of SLBM (Submarine Launched Ballistic Missile) of North Korea. Recently, North Korea tested launching of SLBM which is threatening international security. Also it is known that North Korea had possessed the technologies about SLBM since they disassembled submarines out of commission of the former Soviet Union. If the development of the SLBM of North Korea is completed, it should be affected as asymmetric threat to South Korea. Therefore, for active respondence to these threat, it is essential to analyze the SLBM systematically. In this point of view, this work made a SLBM flight model and simulated. In addition, we controled flight trajectories according to adjusting loft angle and described their characteristics. The sea-based ballistic missile defense system is required for an effective response to the flight trajectory of the SLBM from mid-course to terminal phase.

Convenient Radar Received Power Prediction Method for North Korea SLBM Detection (북한 SLBM 탐지를 위한 레이다 수신전력 간편 추정 방법)

  • Seo, Hyeong-Pil;Park, Hyoung Hun;Lee, Kyoung-Haing
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • This research focuses on convenient radar received power prediction method for detection predictions of North Korea SLBM(Submarine Launched Ballistic Missile). Recently, North Korea tested launching of SLBM which is threatening international security. Therefore, for active respondence to these threat, it is essential to analyze the radar detection prediction of SLBM. In this point of view, this work suggests a method for detection predictions for SLBM by simulating of RCS(Radar Cross Section) and wave propagation.

Design of Hybrid Rocket (Altitude 15km) Using Liquid Oxidizer ${N_2}O$ (${N_2}O$ 액체산화제를 사용한 고도 15km급 하이브리드 로켓 설계)

  • Heo, Jun-Young;Cho, Min-Gyung;Kim, Jong-Chan;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.97-100
    • /
    • 2008
  • A hybrid sounding rocket carrying about 10kg payload reaching up to 15km altitude has been designed. The commercial seamless aluminium tube and liquid ${N_2}O$ without pressurization devices were chosen as rocket motor case and oxidizer supply system respectively. A hybrid rocket engine performing required propulsion impulse is designed with time dependent internal ballistic scheme. Engine performance, aerodynamic characteristics, and trajectory were predicted by a integral technique of internal ballistics and external ballistics. The design results were evaluated by comparison with previous experimental data, technical reports, and literatures.

  • PDF

Performance Analysis of Tactical Ballistic Missile Tracking Filters in Phased Array Multi-Function Radar (위상 배열 다기능 레이더의 탄도탄 추적 필터 성능 분석)

  • Jung, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.995-1001
    • /
    • 2012
  • This paper compares the performance of several tracking filters, namely, alpha-beta filter, Kalman filter and TBM tracking filter for ballistic target tracking problem using multi-function radar. Every of three tracking filters suggested was tested on simulator developed in accordance with TBM trajectory and MFR RSP measurement. The result shows the method using TBM tracking filter gives 75.3 % decreased velocity RMS error than alpha-beta filter. After initialization, the RMS error of range and velocity of the proposed filter is also smaller than the Kalman filter. Finally the proposed filter is suitable for high-speed TBM tracking due to the stable angle tracking accuracy.

RCS of Ballistic Missile Based on Radar Position (레이더 위치에 따른 탄도미사일의 RCS 특성)

  • Park, Tae-Yong;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • It is difficult to detect, track and intercept ballistic missile because of its high speed and short flight time from launching to target area. In order to increase the success rate of a ballistic missile interceptor, it is important to track the flight trajectory for a long time after the detection in the early launch. Radar Cross Section(RCS) of the target is important when the target to be detected by the radar, and the difference between the RCS value greatly changes depending on the viewing direction during the flight missile trajectory. In this paper, it is assumed that a ballistic missile is launched at east coast of North Korea, observe that missile by a land based radar and sea deployed radar. And it is analyzed and compared that RCS difference of ballistic missile.

Filtering Algorithms for Position Evaluation and Tracking of Tactical Objects (전술객체 위치 모의 및 추적을 위한 필터링 알고리즘 연구)

  • Kim, Seok-Kwon;Jin, Seung-Ri;Son, Jae-Won;Park, Dong-Jo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.199-208
    • /
    • 2010
  • Positions of tactical objects are represented as Time, Space and Position Information(TSPI) in modeling and simulations(M&S). The format and required information record for TSPI is investigated by referring the TSPI object model of the Test and Training Enabling Architecture(TENA), which has been developed by the United States Department of Defense. The most sophisticated tactical data link, Link-16 has a Precise Participant Location and Information (PPLI) message. We study the data format for exchanging TSPI data based on the PPLI message. To evaluate and track positions of tactical objects, we consider the Kalman filter for linear systems, and the extended Kalman filter and the unscented Kalman filter for nonlinear systems. Based on motion equations of a ballistic missile, the tracking performance for the trajectory of the ballistic missile is simulated by the unscented Kalman filter.

Estimation of Safety Area for Intercept Debris by Using Modeling and Simulation (탄도탄 요격시험 안전구역 산출을 위한 모델링 및 시뮬레이션)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The ballistic missile threat continues to increase with the proliferation of missile technology. In response to this threat, many kinds of interceptors have been emphasized over the years. For development of interceptor, systematic flight tests are essential. Flight tests provide valuable data that can be used to verify performance and confirm the technological progress of ballistic missile defense system including interceptor. However, during flight tests, civilians near the test region could be risk due to a lot of intercept debris. For this reason, reliable estimate of safety area for the flight tests should be preceded. In this study, prediction of safety area is performed through modeling and simulation. Firstly, behaviors of ballistic missile and interceptor are simulated for those entire phase including interception to obtain the relative intercept velocity and the relative impact angle. By using obtained data of kinetic energy, the fragment ejection velocity is calculated and fragment trajectories are simulated by considering drag, gravity and wind effects. Based on the debris field formation and hazard evaluation of debris, final safety area is calculated.