• Title/Summary/Keyword: 타이어트랙

Search Result 10, Processing Time 0.022 seconds

타이어 트랙션시험차 및 기초적 실험결과

  • JeonJeon Haeng-Nam;Ga Ha-Hong;SongHa Yang-Hong
    • The tire
    • /
    • s.69
    • /
    • pp.12-16
    • /
    • 1977
  • 타이어의 실노면상에서의 트랙션성능을 측정, 평가하는것은 자동차의 발진, 가속, 제동 및 시회성능의 점으로브터 중요하면 이것을 측정하기 위해서 타이어 트랙션시험차를 개발했다. 이시험차는 타이어의트랙션성능을 미끄럼율과제동, 구동계수의 관계, 횡화각과 사이드포오스계수, 어라이닝토루크의 관계로 측정되는 특장을 갖는다. 이시험차를 이용해서, 건조및 습윤아스팔트노상과 설노상에서의 트랙션성능에 대한 타이어트랫드의 기본적 페턴의영향을 측정한 결과, 다음과 같은 지견을 얻었다. (1)도로의 상태의 상위에 의한 타이어트랙션 성능은 건조상태에선 습윤상태보다 크며 노설상에선 전양자보다 훨씬 작다. (2)트랫드의 종방향의 구본수의 영향에 대해선 여하한 노면상태에서든 구본수가 증가한만큼 트랙션성능은 증가하나 어느구본수에선 포화하는 경향이 있다. (3)설노상에서의 트랫드의 구각도에 대해서는 구의각도가 타이어의 진행방향에 대해서 직각의 페턴이 좋다고 할 수 있다.

  • PDF

미,승용차용타이어 품질등급제공시

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.61
    • /
    • pp.28-35
    • /
    • 1975
  • 미국 운수성은 5월 28일자로 9년간에 긍해서 논쟁되어왔든 승용차용 타이어의 품질등급제의 최종안을 공시했다. 이 법률은 (1)트랫드마모성, (2)트랙숀성능, (3)내열(고속)성능의 3자에 대하여 품질성능을 타이어에 표시하지 않으면 안된다고 하는것. 이 품질등급제가 미국의 타이어 시장에 가지고오는 영향은 크다고 보여지고 있다. 그래서 이 품질등급제가 생긴 배경. 그 내용에 대해서 타이어 메이커어의 담당자로 부터 들어보았다. 겸하여 최종안의 전문을 게재한다.

  • PDF

Change of Physical Property of Rubber Compound by Terpene Modified Phenolic Resin Structure (테르펜 개질 페놀 수지 구조에 따른 배합고무 물성 변화)

  • Kim, Kun Ok;Kim, Do-Heyoung;Song, Yo Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.310-316
    • /
    • 2020
  • Terpene-modified phenolic resins were used to improve the tires wet traction related to the driving safety and also rolling resistance related to fuel efficiency. In this work, alpha-pinene, beta pinene, and delta limonene resins, which constitute different basic structures of terpene-modified phenolic resins, were individually added to the tread compounds of tires and their physical properties were compared with those of the alkyl phenol resin compounds. Alkyl phenolic resins showed no significant difference in tangent delta from terpene-modified phenolic resins at 0 ℃, which is related to wet traction, but showed higher tangent delta at 80 ℃, which is related to rolling resistance, indicating smaller fuel efficiency improvement effects. Among the terpene-modified phenolic resins, beta pinene one showed improved wet traction and fuel efficiency compared to those of other resins. Delta limonene resin showed the best wet traction improvement effect, and alkyl phenolic resins showed relatively high tensile strength and abrasion property. All terpene-modified resins exhibited better rolling resistance than those of alkyl phenolic ones so that they can be said to have better fuel efficiency improvement effects and also to improve other properties compared to those of blanks. Terpene-modified phenolic resins could be used when mixing tire compounds referring to the properties of the phenolic resins revealed in this work, which could result in preparing compounds with improved wet traction and rolling resistance.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF

A Study on the Utilization of Waste Tire/Waste Moter Oil Pyrolytic Residue for Asphalt (폐타이어/폐윤활유 열분해 잔류물의 아스팔트 활용기술)

  • 김상국;손성근;김동찬
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.16-21
    • /
    • 1995
  • When waste t~re/~vastmz otor oil is pyrolyzed. most of them hecome gaseous produds. and thc remaining onc, whascwelght is ahout in% oi the waste Ore, is pyrolyced residue mnstly composcd oi ca~bnn black A rescsrcll was canicrl nut loutilize lhe pyralyred residue of waste tnelwuste lnotol 011 us retnin~cing agent of asphall concrete, bescd on iolelg~r lesearchrepurl. This shows thal the properlies ol asphall concrele ~nclud~cd~ugl ah~l~tyre, sistance to Tear. temperature-v~scusilysusceptil,ilily u e g reatly improved when lhe pellellrcd hrln aI carlmn hlack usmg petroleum o ~als a hinder Iar ihe pellels isused with asphalt. The surface of the pyralyred resirh~ei s covned by ocl film and thla lnakes good comllatibllity with asphallIn order lo ulilk pyrolyzed residue as a reinforcing agenl oi lhe itsphalt concrete, various tests such as Marshnll tcsi, wheeltracking, and revelhng test has been carried out a1 KLER, Ko~ea I-lighway Coo~poration, and TCMO. Tcst lcsults satirry KSslandard, show "npmvements an the dynam~cs tab~l~lzym, d incrcase reslslance to wear at cold telnpelatule Invrsligadon wascarlied oul to sludg the possibility of soil pallul~on when pyrolyzed residue is used as a tzmioicing agenl. E~pcrimentalresulls show the rcsidue contained in thc asphall docs not cause cnv~ranma~lparlo blems.e cnv~ranma~lparlo blems.

  • PDF

A Study on the Low Cycle Fatigue Characteristics for the Structural Low Carbon Steels (構造용 低炭素鋼材의 低사이클 疲勞特性에 관한 硏究)

  • 김영식;노재충;한명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.307-315
    • /
    • 1989
  • In recent years, the fatigue design method by analysis for the mechanical components and the welded structures has much increased, instead of the fatigue design method by rule that has been widely used from the past days. When a fatigue design is conducted by that method, the basic informations, fatigue life curves are mainly obtained from the results of the strain controlled low cycle fatigue test. From these point of views, the low cycle fatigue test is coming to be given a much importance lately. In this paper, the strain controlled low cycle fatigue properties at room temperature in air environment were investigated for the low carbon forged steel, SF45A, and the rolled steel for the welded structure, SM 41B. Throughout the test, strain ratio, R, was maintained constant with the fully reversed condition, -1. As the experimental results, the cyclic stress-strain behaviours of the test materials were different each other, but the low cycle fatigue life-time of them appeared to show little difference in the region of this test conditions.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

A Study on Fretting Fatigue of High Strength Aluminum Alloys (고강도 알루미늄 합금의 Fretting Fatigue에 관한 연구)

  • Lee, Hak-Sun;Kim, Sang-Tae;Choi, Sung-Jong;Yang, Hyun-Tae;Kim, Jae-Kyoung;Lee, Dong-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.168-173
    • /
    • 2004
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decrease in 50-70% of the plain fatigue strength. This may be observed in aircraft, automobile and nuclear power plant used in special environment and various loading conditions. In the present study, the characteristics of the fretting fatigue are investigated using the two aluminum alloy(Al2024-T3511 and Al7050-T7451). Through the experiment, it is found that the fretting fatigue strength of the Al7050-T7451 alloy decreased about 50% from the plain fatigue strength, while the fretting fatigue strength of the Al2024-T3511 alloy decreased about 45%. The tire track was widely observed in fracture surface area of oblique crack which was induced by contact pressure. These results can be the basic data to the structural integrity evaluation of aluminum alloy subjected to fretting damage.

  • PDF

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.