• Title/Summary/Keyword: 타원형 관

Search Result 56, Processing Time 0.023 seconds

Studies on the Variation of Native Tea Plants in Korea (한국(韓國) 야생다(野生茶)의 유연성(類緣性)에 관(關)한 연구(硏究))

  • Eun, Jong Bang;Lee, Chong Seok;Kim, Dong Youn
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.54-63
    • /
    • 1984
  • In order to compare the variation of Korean native Yea plants, the botanical specimens of the two introduced varieties and the wild varieties collected from 49 places were made. The leaf and flower types from them were investigated. 1) About 78% of the wild tea plants were existed in bamboo thicket or in forest, and 95% were grown in the southward inclined place. 2) The wild tea plants were distributed in the region from $34^{\circ}27^{\prime}$ north to $35^{\circ}43^{\prime}$ north of latitude, but most of them were grown in the region of 35 degree north of latitude. 3) The leaf types of wild tea plants were elliptical and oblong, but onr oval type of leaf was found in the Mand$\ddot{o}$ksa, Kangjin. 4) The Leaf sizes of wild tea plants were $14.74{\pm}0.57{\times}5.72{\pm}0.24cm$ in the large leaf and $12.16{\pm}1.57{\times}3.53{\pm}0.41cm$ in the small leaf. 5) There were two leaf types that one is acuminate, coriaceous, reticulate, dark green, and the other is obtuse, chartaceous, rugose, deep green. 6) There were not much difference between varieties in the flower types, only except the trait of Yongjang. 7) Among the wild tea plants, it was considered that Yongjang-type variety would he a variant or hybrid of bohea-variety (chinese-variety) and Waun-type variety would he a variant or hybrid of macrophylla variety and General-type variety would be a degenerated variant of Waun-type or another hybrid.

  • PDF

Tegumental Ultrastructures of Spirometra erinacei by Developmental stages (만손열두조충의 발육단계별 표피 미세구조)

  • Sohn, Woon-Mok;Lee, Jin-Ha
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.41-56
    • /
    • 2005
  • Present study was performed to observe the tegumental ultrastructures by the developmental stages which derived from the experimental life cycle of Spirometra erinacei in laboratory conditions. In SEM view, coracidium was spherical in shape with numerous cilia, and its surface was covered with long cilia, tuberclelike projections with millet-like processes, and small holes. The body surface of procercoid was covered with numerous pointed microtriches except that of frontal pit with stout spine-like ones. However that of cercomer was covered with somewhat sparse blunt-tiped microtriches. Plerocercoids of 3 days old resembled the mature procercoid in shape, and their frontal pits were covered with numerous stout spine-like microtriches. However frontal pit and body surface in more than 5 days old ones were covered with conoid microtriches. On the surface of adult scolex, hairly long filamentous and stout short microtriches were mixedly distributed. Filamentous microtriches were more densely distributed in the anterior portion than in the posterior of scolex. The neck and immature proglottid were covered with only stout short conoid microtriches. In TEM view of coracidia, embryophore and oncosphere were obviously distinguished. The embryophore contained numerous glycogen particles, mitochondria and lipid granules. The cilia on the surface of embryophore rooted in the coracidial sheath, and consisted of 9 pairs of microtubules and 2 core complex. The oncosphere was covered with a thin and unarmed tegument, and was multi-nucleated. The protoplasmic layer of procercoid and plerocercoid consisted of disc-shaped bodies, vacuoles and mitochondria. Their tegumental cells commonly retained a nucleus, granular endoplasmic reticulums and secretory granules. The protoplasmic layer of plerocercoid was more compacted than that of procercoid. From the above results, it was confirmed that the tegumental ultrastructures are something different according to the developmental stages of S. erinacei.

Studies on the Propagation of the Freshwater Prawn, Macrobrachium nipponense (De Haan) Reared in the Laboratory (담수산 징거미새우, Macrobrachium nipponense (De Haan)의 증${\cdot}$양식에 관한 생물학적 기초연구 1. 생식생태에 관한 연구)

  • Kwon Chin-Soo;Lee Bok-Kyu
    • Journal of Aquaculture
    • /
    • v.4 no.1
    • /
    • pp.31-66
    • /
    • 1991
  • This paper deals with the reproductive ecology e.g., number of the pre-spawning moults, morphological characteristics of the pre-spawning moult the common moult, daily ration druing a molting cycle mating behavior, structures of spermatozoa and spermatophore, structure of vas deferens, mechanisms of the oviposition and brooding into the egg-chambers, a suitable time for the artificial mating and fertilization, time sequence of the oviposition and brooding into egg-chambers from the copulation, responses to temperature and chlorinity on the egg development and hatching, effect of temperatures on duration of egg development, physical mechanism of the egg hatching, to make an attempt for the artificial spawning and brooding to establish a suitable system of the artificial seedling-production for the aquaculture. 1. Females molted commonly $8{\~}10$ times at an interval of $17{\~}18$ days at $28^{\circ}C,\;3.26\~4.35\%_{\circ}$ while the prespawning moltings were $4{\~}5$ times at an interval of $13{\~}14$ days. The suitable state for artificial copulation was within 14 hours elapsed from the prespawning moltings (most suitable state was within 8 hours). Males discharged a gelatinous spermatophore and placed it on the females sternum during copulation. Oviposition was seen $6{\~}17$ hours after copulation. External fertilization was considered to take place at oviposition. Fertilized eggs held in egg-chambers forming between pleopods were about $5000{\~}6000$ in females those sizes about 6.5 cm in body length. 2. Eggs immediately after oviposition were elliptic shape, measuring $0.58{\times}0.48$ mm up to hatching. Their sizes increased with egg development and finally reached $0.85{\times}0.54$ mm up to hatching. The relationship between the long axis of the egg(Y in U) and days elapsed(X) was expressed as Y= 5.60194 + 0.007358X. The eggs performed superficial cleavage and their cleavage furrows became visible at the 4-daughter-nucleus stage. The eggs showed normal development up to hatching at water temperature range of $22{\~}30^{\circ}C$ (optimum temperature : $26{\~}28^{\circ}C$) and at chlorinity range of $0.00\~6.64\%_{\circ}$ (optimun chlorinity : $2.21{\%}_{\circ}$). The relationship between incubation period (Y in days) and water temperature(X in $^{\circ}C$) could be expressed as Y= 50.803-1.3555X. The eggs hatched $12{\~}13$ days after oviposition at $28.0{\~}28.6^{\circ}C$ 3. The pre-spawning moltings were appreciably different in the morphologic structure from those of common moltings. Breeding setae and dresses were formed on the thoracic regions, abdominal epimerae and the bases of the first to fourth pleopods in order to prepare and support oviposition, transfering and supporting eggs in egg-chambers up to hatching. These supplementary breeding organs were observed only at reproductive seasons.

  • PDF

Morphological and Growth Characteristics of Collected Coix lacryma-jopbi mayuen STAF in Korea (율무 국내수집종(國內蒐集種)의 형태(形態) 및 생육(生育) 특성(特性))

  • Lee, Hyo-Sung;Kim, Ki-Jung;Lee, Eun-Sub;Song, Byung-Yurl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • This research was conducted to investigate morpological and growth characteristics of 358 Coix lacryma-jopbi mayuen STAF collected in Korea. The test collections contained 76% medium wide-type leaf, 59% medium size-type seed, 34% large size-type seed, 70% elliptical-type shell, 50% brown shell color, 92% low stem color and hardness of seed coat averaged $3.4kg/cm^2$ with the range of $1.1{\sim}18.7kg/cm^2$. 24% adaptable plant height ranged from 156cm to 170cm, days to heading after seeding averaged 83.2% with the range of $74{\sim}94$ days, early maturating varietes was 24.9% below 80 days. Rate to leaf blight 48.5% with the range of $9{\sim}92%$ and rate to stem borer averaged 8% with the range of $0{\sim}17%$. The weight of 1000 seeds showed positive correlation with days to flowering and plant height and number of seeds per plant showed positive corrleation with percentage of ripness, but weight of 1000 seeds showed negative correlation with occurrence of leaf blight and stem borer plant. Therefore we are expecting useful germplasm and selectable index for effective breeding.

  • PDF

A Ultrastructural Study on the Cerebral Ganglion of the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 뇌신경절 (Cerebral ganglion)의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • In this paper, five kinds of neurosecretory cells-light green (LG) cell, dark green (DG) cell, caudo-dorsal (CD) cell, blue green (BG) cell, and yellow (Y) cell- and neuropils in the cerebral ganglion of the African giant snail, Achatina fulica, were observed with an electron microscope. The following results were obtained. The LG cells are circular or ovoid in shape, and about $60{\mu}m$ in size. The nucleus and cytoplasm of the LG cell look light due to their electron-low density. Large granular chromatins are evenly developed in the karyolymph, where round nucleoli are also found. In the cytoplasm, electron -high dense round granules of $0.4{\mu}m$ in average size are crowded. The DG cells are ovoid in shape, and $50\sim20{\mu}m$ in size. These relatively electron-high dense cells were rarely found. In their cytoplasm, cell organelles such as rough endoplasmic reticulum and mitochondria are found together with electron -high dense round granules of $0.2{\mu}m$ in average size. The CD cells are ellipsoidal cells densely distributed in caudo-dorsal parts of the cerebral ganglion. They have large nuclei compared with the cytoplasm. The developed granular heterochromatins are observed in the karyolymph, and lots of small round granules of $0.12{\mu}m$ in average size in the cytoplasm. The 3G cells, rarely found around endoneurium of the cerebral ganglion, take the shapes of long ellipses. They look dark due to their electron -high density. In the cytoplasm, small round granules of $0.1{\mu}m$ in average size are found. The Y cells are the smallest among the neurosecretory cells($9\times6.6{\mu}m$ in size). They are found mostly between the medio-dorsal parts and the caudo-dorsal parts of the cerebral ganglion. In the cytoplasm, tiny round granules of $0.08{\mu}m$ in average size form a group. The neuropils are found in the middle of the cerebral ganglion. In the axon ending, round granules with electron -high density ($0.07\sim0.03{\mu}m$ in diameter) and lucent vesicles ($0.03{\mu}m$ in diameter) are found in large quantities. They are excreted in the state of exocytosome formed by the invagination of the limiting membrane of the axon ending.

  • PDF

Stomata Variation of Rice and Weeds (수도(水稻) 및 잡초(雜草)의 기공형태(氣孔形態)와 분포(分布))

  • Kim, S.C.;Lee, S.K.;Chung, G.S.
    • Korean Journal of Weed Science
    • /
    • v.9 no.1
    • /
    • pp.46-55
    • /
    • 1989
  • Stomatal variation was observed at the Yeongnam Crop Experiment Station in 1988 using 42 rice cultivars and 30 weed species. The shape, density or size of stomata was varied depending on the species. Two general trends, however, were found that more number of stomata was found at lower leaf epidermis than upper leaf epidermis and stomata number was negatively correlated with stomata size. Aneilema japonica and Portulaca oleracea had the least number of stomata having 17-20 stomata per $m^2$ for upper leaf epidermis and 17-54 stomata for lower leaf epidermis while Polygonum conspicuum had the greatest number of stomata (449 for upper leaf epidermis and 511 for lower leaf epidermis). Soybean, Aeschynomene indica, Ludwigia prostrata and Lactuca indica had the smallest in stomata size while the biggest stomata was found at P. oleracea and A. Japonica that had the least number of stomata. Cyperus species such as C. difformis, C. iria and C. serotinus had no stomata at upper leaf epidermis. The stomata were distributed only at lower leaf epidermis for these species. Potamogeton distinctus, on the other hand, had stomata almost at upper leaf epidermis and thus, hardly found the stomata at lower leaf epidermis. Among rice cultivars, Tongil-type had the greatest number of stomata followed by Indica-type and Japonica-type, in order. Cultivars released after 1960 had more stomata than cultivars released before 1960 for Japonica-type cultivars while stomata size had reversed trend. Jinheung had the least number of stomata (${\fallingdotseq}$ 150 per $mm^2$) while Yushin had the greatest number of stomata (350 for upper and 449 for lower leaf epidermis, respectively) among rice cultivars. Other cultivars having more than 350 stomata per $mm^2$ were Samgangbyeo, Milyang 23, Woonbongbyeo, etc.

  • PDF