• Title/Summary/Keyword: 타원공

Search Result 212, Processing Time 0.046 seconds

NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL (선회하는 2차원 유연 날개의 유체-구조 상호작용 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD (FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

The Design of BPF with Dielectric Resonators (DR을 이용한 대역통과 필터 설계)

  • Kang, Eun Kyun;Jeon, Hyung Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.128-132
    • /
    • 2017
  • In this thesis, a BPF(band-pass filter) at the center frequency of 2.14GHz, and bandwidth of 20MHz is designed and implemented using high Q dielectric resonators with ${\varepsilon}_r=38$. The DR(dielectric resonator) is resonated by $TE_{01{\delta}}$-mode and it has a hole in the center of DR. The BPF consists of 6-poles dielectric resonators and the characteristic of elliptic function is obtained by non-adjacent coupling. It has the average insertion loss of 0.97dB and the return loss over 25dB in its passband. In this thesis, the frequency selectivity is more improved by the coupling characteristics between non-adjacent resonators than that of dielectric resonator filters with a Chebyshev response.

Performance Characteristic of Large Diameter Oval Finned-Tube Heat Exchanger for Dryer (건조기용 타원관 대구경 핀-관 열교환기의 성능특성)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.22-27
    • /
    • 2014
  • The objectives of this paper are to obtain an empirical equations regarding the correlations between heat transfer and pressure drop of oval fin-tube heat exchanger having large diameter using wilson plot method. It was difficult to find any recommendable heat transfer and friction factor correlation available for our large diameter experimental cases. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. The resulting empirical correlations for the Nui and f-factor are given as $Nu_i=0.0146Re^{0.809}Pr^{0.3}$ and $f=4.366Re^{-0.64}$, respectively. The empirical correlations of the Nui and f-factors were developed for the large diameter oval finned-tube heat exchanger as a function of the Reynolds number. As the EG(Ethylene glycol) and air flow rate increases, the heat transfer rate and pressure drop is increased largely.

Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems (境界積分法에 의한 軸對稱 彈性 問題의 解析)

  • 공창덕;김진우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.787-797
    • /
    • 1986
  • An implicit approach is employed to obtain a general boundary integral formulation of axisymmetric elastic problems in terms of a pair of singular integral equations. The corresponding kernel functions from the solutions of Navier's equation are derived by applying a three dimensional integral and a direct axisymmetrical approach. A numerical discretization schem including the evaluation of Cauchy principal values of the singular integral is described. Finally the typical axisymmetric elastic models are analyzed, i.e. the hollow sphere, the constant thickness and the V-notched round bar.

The Forward/Inverse Force Transmission Analyses of the Stewart Platform (스튜어트 플랫폼의 순방향/역방향 힘 전달 해석)

  • Kim, Han-Sung;Choi, Yong-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.200-208
    • /
    • 1999
  • The statics relation of the Stewart platform has been investigated from the viewpoint of the forward and inverse force transmission analyses. Two eigenvalue problems corresponding to the forward and inverse force transmission analyses have been formulated. The forward force transmission analysis is to determine the ranges of the magnitudes of the force and moment generated at the end-effector for the given magnitude of linear actuator forces. In reverse order, the inverse force transmission analysis is to find the range of the magnitude of actuator forces for the given ranges of the magnitudes of the force and moment at the end-effector. The inverse force transmission analysis is important since it can provide a designer with a valuable information about how to choose the linear actuators. It has been proved that two eigenvalue problems have a reciprocal relation, which implies that solving either of the eigenvalue problems may complete the forward/inverse force transmission analysis. A numerical example has been also presented.

  • PDF

Ice Making Characteristics According to Changing Shape of Ice Making Tube (제빙관의 형태변화에 따른 제빙특성)

  • Jung, Eun-Ho;Park, KI-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.291-296
    • /
    • 2009
  • Ice accumulating system patterned ice-an-coil is the way of refrigerating regenerative materials on the surface of copper-tube inserted into the inside of ice-storage. The study experimented to understand ice-an-coil type ice making characteristics according to changing shape of ice making tube. The experiment were carried out under various conditions, that used brine temperature($-l0^{\circ}C$, $-6^{\circ}C$) brine flow rate(l.0m/s, 1.8m/s) and inlet water temperature($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. And I set up two hypotheses and compared the capacity of ice-making of the two cases; each had the same thermal area and one had an round-shaped copper tube but the other had an oval-shaped copper tube.

A Design and Fabrication of Bandpass Filter using Miniaturized Square SIR (소형화된 구형 SIR을 이용한 대역통과필터 설계 및 제작)

  • Nam, Hun;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.2
    • /
    • pp.13-18
    • /
    • 2001
  • In this paper, a four-pole quasi-elliptic function bandpass filter of 1.95GHz center frequency with 60 MHz bandwidth for IMT-2000 using miniaturized square SIR(Stepped Impedance Resonator) is designed and fabricated. The simulation of NUFDTD(Nonuniform Finite Difference Time Domain) is used to design the resonator and to calculate the coupling coefficient of three basic structures. The size reduction of miniaturized square SIR resonator is about more than 50% compare with a square open loop resonator. Bandpass filter using this resonator shows good microwave characteristic with the harmonic suppression of about 19dB. The results of measurements are almost similar to those of simulation.

  • PDF

High-precision Micro-machining using Vibration Cutting (진동절삭을 이용한 고정도 미세가공)

  • Son, Seong-Min;Lim, Han-Seok;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

Characteristics and Predictions of the Cavitation Inception in a Turbopump Inducer (터보펌프 인듀서에서 캐비테이션 시작점의 특성 및 예측에 관한 연구)

  • Kang, Byung Yun;Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • The cavitation of a turbopump inducer develops from the inception to a critical point, and encounters breakdown finally. In this study, we evaluated the characteristics and predictions of cavitation inception for the turbopump inducer using empirical equations. The empirical equation for the elliptical plate predicted the generation of cavitation inception of the turbopump inducer relatively well. However, in case of the marine propeller, it showed a considerable difference owing to the Reynolds number of the operating point. The cavitation inception occurred earlier as the number of blades increased. However, the solidity had no major impact on the cavitation inception because the cavitation occurred locally at the tip of the leading edge.