• Title/Summary/Keyword: 타설각도

Search Result 9, Processing Time 0.021 seconds

Laboratory and Numerical Simulation About the Installation Angle of Face Bolts (페이스볼트의 타설각도가 보강효과에 미치는 영향 분석)

  • Seo, Kyoung-Won;Nishimura, Kazuo;Kim, Kwang-Yeom;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.131-138
    • /
    • 2006
  • A face bolt is normally horizontally installed. However, it often deviates from the initial horizontal position. The reinforcement effect of face bolts by its installation angle is analysed in this study. For the purpose of preventing surface subsidence and horizontal displacement of face, the face bolt should be installed as horizontally as possible, and if it deviates from the initial position, more bolts should be installed. Also, the residual face bolt left behind the face due to its installation angle has little supportive effect because it its too short and radially arranged.

Study of Sand-drain machine using the excavator (포크레인을 이용한 샌드 드레인 시공 장비에 대한 연구)

  • Lee, Jeong-Hwan;Oh, Seong-Hun;So, Byung-Moon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.954-957
    • /
    • 2011
  • 본 논문은 기존의 샌드 드레인 시공장비의 베이스 머신인 기중기 대신에 포크레인을 이용하여 샌드 드레인 시공 장비를 개발 하였다. 그리고 세부적인 기술 개발 사항으로 전기적 타설의 방식에서 유압 타설을 통한 작업 효율 연비 향상과 구조해석을 통한 장비의 무게의 경량화를 이루었다. 그리고 리더의 각도 조절을 통하여 작업의 향상을 도모 할 수 있는 각도 조절 장치와 타설 작업의 자동 모니터링과 제어를 할 수 있는 자동제어 시스템을 개발 하였다.

  • PDF

A Laboratory Test and Numerical Analysis to Determine the Number of Additional Installation of Face Bolts due to the Deviated Bolts from the Horizontal Direction (막장볼트가 수평으로부터 벗어나는 경우 추가해 주어야 하는 본수에 대한 실내실험 및 수치해석)

  • Seo, Kyoung-Won;Lee, Sung-Won;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • During installation of face bolts, they are often deviated from the designed horizontal direction. In this study, a laboratory test and numerical analysis were conducted to examine the change of support effect by them. Also, the number of bolts to be added for achieving the designed support effect was considered. It was verified in this study that the horizontal installation is more effective. Under the test condition of this study, 1.5 bolts/section should be added in the face of which the installation density was 3 bolts/section when the bolts were installed with $R15^{\circ}$ angle from the horizontal position.

Mechanical Properties of Fiber Reinforced Concrete According to Steel Fiber Dispersion (강섬유의 분포 특성에 따른 섬유보강 콘크리트의 역학적 특성)

  • Lee, Bang-Yeon;Kang, Soo-Tae;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.921-924
    • /
    • 2008
  • Several techniques, including transmission X-ray photography and AC-impedance spectroscopy, are available for evaluating the fiber dispersion in a fiber reinforced concrete Evaluating the fiber dispersion in fiber reinfored concrete needs since the fibers bridge crackseffectively. However, these equipment is very expensive. Therefore this paper presents the quantitative evaluation method based on the image analysis of sectional image taken using an ordinary digital camera. After detecting the fiber accurately, the fiber dispersion characteristics are represented by the coefficient such as the fiber dispersion coefficient, the number of fibers in unit area, and the distribution of the fiber orientation. Test were performed to evaluate the effectiveness of proposed method and the dispersion characteristics of fibers according placing method and flow direction. Additionally, the effect of fiber dispersion characteristics on mechanical properties was investigated. Test results shows that fiber aligned along the flow direction and more fibers placed and dispersion was better on the section parallel to the flow direction. And about 50% difference in the flexural tensile strength according to the placing method occured.

  • PDF

Calculation of Bearing Capacity of Tapered Drilled Shafts in Cohesionless Soils Using Shape Factor (형상계수를 이용한 사질토 지반에 타설된 테이퍼말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.13-22
    • /
    • 2008
  • Fourteen calibration ehamber tests were performed using one cylindrical and two tapered piles with different taper angles to investigate the changes of the bearing capacity of tapered piles with soil state and taper angle of piles. The results of calibration chamber tests show that the ultimate base resistance of tapered piles increases with increasing mean stress and relative density of soil. It also increases with increasing taper angle for medium sand, but with decreasing taper angle for dense sand. The ultimate shaft resistance of tapered piles increases as vertical and horizontal stresses, relative density and taper angle increase. Based on the results of model pile load tests, a new design method with shape factors for estimation of the bearing capacity of tapered piles is proposed considering the effect of soil state and taper angle on bearing capacity of tapered piles. In order to check the accuracy of predictions calculated using the new method, middle-scale field pile load tests were also conducted on cylindrical and tapered drilled shafts in clayey sand. Comparison of calculated values with measured ones shows that the new design method produces satisfactory predictions tor tapered piles.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.

Evaluation on Reinforcing Effect of Inclined System Bolting by Model Tests and Numerical Analysis (모형시험 및 수치해석을 통한 경사 시스템 록볼트의 보강효과 분석)

  • Lee, Jea-Dug;Kim, Byoung-Il;Yoo, Wan-Kyu;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1529-1539
    • /
    • 2013
  • Recent case studies in Japan have shown that rockbolts are commonly installed at an oblique angle to the excavation direction of the tunnel, instead of at a right angle, due to restriction of the working space. In particular, in the case of expansion in an existing tunnel, the working space can be very small, due to the large protective structures necessary to operate within an existing tunnel. In this case, where both the current use of the existing tunnel, and the reinforcement of the ground around the tunnel are required, the effects of installation angles and patterns of rockbolts are important factors in the design process. Therefore, in this study, a total number of 24 model tests are performed, to investigate the reinforcing effects of system bolting installed obliquely from the excavation direction of the tunnel, by changing the installation angle of bolts, longitudinal distance, and bonded length of bolts. The model test results indicate that the relaxed load ratio decreases, with the increase of both the bonded lengths and the number of the installed bolts, resulting in the decrease of the supported area by one bolt. Two-dimensional numerical analysis, which considered the reinforcement effect of inclined system bolting as the change of engineering properties near the tunnel, demonstrated that the deflection patterns at the tunnel crown in the numerical simulations, show a similar tendency to those measured in the model tests.

Strength of Improved Soil on the Work-conditions of Deep Mixing Method (시공조건에 따른 심층혼합처리 개량체의 강도에 관한 연구)

  • Lee, Kwang-Yeol;Yoon, Sung-Tai;Kim, Sung-Moo;Han, Woo-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.99-104
    • /
    • 2007
  • The deep soil mixing, on ground modification technique, has been used for many diverse applications including building and bridge foundations, port and harbor foundations, retaining structures, liquefaction mitigation, temporary support of excavation and water control. This method has the basic objective of finding the most efficient and economical method for mixing cement with soil to secure settlements through improvement of stability on soft ground. In this research, the experiments were conducted on a laboratory scale with the various test conditions of mixing method; the angle of mixing wing, mixing speed. Strength and shapes of improved soil of these test conditions of deep mixing method were analysed. From the study, it was found that the mixing conditions affect remarkably to the strength and shapes of improved soils.

A Study on Optimal Reinforcing Type of Precast Retaining Wall Reinforced by Micropiles (마이크로파일로 보강된 프리캐스트 콘크리트 옹벽의 최적보강형태에 관한 연구)

  • Kim, Hong-Taek;Park, Jun-Yong;Yoo, Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.89-99
    • /
    • 2006
  • The PCRW (Precast Concrete Retaining Wall) has many advantages compared with cast in place concrete retaining wall : shorter construction period, excellency of quality and minimum interference with the adjacent structure and traffics. However, shallow foundation type of PCRW, which has comparatively better ground condition, has some disadvantages such as difficulty in transportation and higher cost due to the size of PCRW being expanded by resisting only with self-weight if there is no other supplementary reinforcement. The presented study, in order to complement such disadvantages of PCRW, have applied the micropile method. The micropile method has advantages like low-cost and high-efficiency and does not require huge space, because it can be executed with small size equipment. However, the mechanical behavior characteristics of the PCRW reinforced by micropile, which is installed to improve the reinforcement effect, is not yet clearly identified and there is no suggested standard as to the length, diameter, install angle and install position of micropiles. Hence, this method is yet being designed depend on engineer's experience. In this study, various laboratory model tests as to sliding and overturning were performed in order to identify and present the optimum type of reinforcement and reinforcement effect of the PCRW reinforced by micropiles. In addition, it also executed numerical analysis for the purpose of verifying the optimum type of reinforcement for micropiles based on the results of laboratory model tests. The optimum reinforcement type of micropiles was estimated by model test and numerical analysis. The length of micropiles is 0.4 times wall height and the diameter is 0.04 times wall length.