• Title/Summary/Keyword: 타르

Search Result 1,430, Processing Time 0.027 seconds

An Experimental Study on the Improvement of Quality of Mixed Aggregate Using Recycled Aggregate (순환골재 사용 혼합골재의 품질 개선을 위한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Kim, Choong-Gyum;Lee, Sea-Hyun;Kim, Han-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • In this study, recycled aggregate and natural aggregate were mixed in advance using an aggregate mixing facility that was developed to improve the quality of recycled aggregate concrete. Then the mixed aggregate was applied and concrete characteristics before and after a mix were considered. Based on the findings extracted, this study aimed to suggest a new direction for quality stabilization and application activation of recycled aggregate. The test results of change rates of mortars and coarse aggregates in fresh concrete mixed by a concrete mixer, before and after mixing aggregates showed that the variations of the mortars and coarse aggregates in the concrete mixed with the aggregates beforehand were decreased than those in the concrete before mixing them. The variation of compressive strength and the mean compressive strength at the ages of 3 and 7 days showed similar results before and after the aggregates were mixed, and the strength at the age of 28 days before and after mixing them showed larger deviation than that at the ages of 3 and 7 days. The use of the mixed aggregates after mixing aggregates beforehand reduced the variation in strength and is believed that it is advantageous for long-age strength development. The above results show that the variations of coarse aggregates and compressive strength in the concrete using the mixed aggregates produced by mixing recycled aggregates and natural aggregates beforehand are reduced so it will be possible to produce the homogeneous concrete by mixing aggregates beforehand.

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

Construction of Dyeing Condition System for Lithospermum erythrorhizon by Applying Natural Dye and Mordants (천연 염료와 매염제의 응용에 의한 Lithospermum erythrorhizon의 염색 조건 시스템 구축)

  • Jung, Suk-Yul
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.33-38
    • /
    • 2020
  • It was reported that a mobile application was designed to easily provide natural dyeing information such as natural dye related resources, colors and dyed fabrics in 2007. Since studies on the linkage, application, etc. between natural dye dyeing and IoT are still lacking, diversity of information on the change of dyeing pattern by natural dye dyeing is required. In this study, it was to construct dyeing information by natural dyes, e.g., Lithospermum erythrorhizon, on silk, which has been traditionally used as many fibers in Korea. The extraction of the dye from L. erythrorhizon was carried out under pH4. The dried root of L. erythrorhizon showed dark brownish purple. Silk fabric by a without a mordant typically showed a purple dyed pattern. In the staining by sodium tartrate plus citric acid, silk fabric was stained clear brown. Interestingly, the mordant of iron (II) sulfate, the silk fabric was dyed in a light gray color rather than black. When the mordant of aluminum potassium sulfate was treated with L. erythrorhizon-extracted dye, the results were almost the same as when the mordant was not treated. When the degree of dyeing was evaluated numerically, the treatment of the mordant of potassium dichromate was about 50% darker, and the dyeing by iron (II) sulfate was about 75% darker. These results will be helpful in the study of applying various dye colors using L. erythrorhizon, and it will provide information on dyeing controller and database system construction by dyeing parameters such as dyeing degree, pH concentration, and chromaticity change.

The Effect of Supercritical Carbonation on Quality Improvement of Recycled Fine Aggregate (초임계 탄산화 반응이 순환잔골재의 품질개선에 미치는 영향)

  • Heo, Seong-Uk;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The objective of this work is to prove a possibility of void f illing through a carbonation f or the purpose of improving the quality of recycled aggregate. Carbonation can permanently immobilize CO2, which is a greenhouse gas, and thus provides additional benefit on environment. In this work, recycled fine aggregate was reacted using gaseous CO2 and supercritical CO2(scCO2) in a closed chamber, and the changes in physical properties of the recycled f ine aggregate bef ore and af ter carbonation were analyzed using the apparent density, skeletal density, pH, and FE-SEM measurements. Thereafter, a mortar specimen was prepared and a compressive strength was measured. According to the experimental results, it was found that the increase in the apparent density and the true density was higher by the reaction with scCO2, which was conducted at high temperature and high pressure compared to the reaction with gaseous CO2. In addition, the pH of the eluted water was found to have a larger initial decrease than that observed with samples from reaction by gaseous CO2. The shape and amount of calcium carbonate crystals were also found to be larger than that from gaseous CO2. The increase in compressive strength was the largest when using recycled fine aggregate reacted with scCO2. It was clear that quality improvement of recycled fine aggregate was higher with scCO2 than with gaseous CO2.

NOx Reduction Performance in Cement Mortar with TiO2 Treatment and Mineral Admixture (무기계 혼화재료를 혼입한 모르타르 시편의 광촉매 처리를 고려한 NOx 저감 성능)

  • Yoon, Yong-Sik;Kim, Hyeok-Jung;Park, Jang-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.506-513
    • /
    • 2020
  • In this study, the mechanical properties, absorption, and reduction performance of NOx in the mortar containing mineral admixture like zeolite and active hwangtoh were evaluated. Zeolite and active hwangtoh were used as binder, and zeolite and active hwangtoh were substituted for cement. The substitution ratio of two types of mineral admixtures was considered as 20 and 30% respectively. As a result of evaluating the compressive strength and flexural strength of each mortar specimen, the highest strength in the plain mixture was evaluated. As the substitution ratio of zeolite and active hwangtoh increased, the compressive and flexural strength decreased. In addition, the difference of compressive and flexural strength between active hwangtoh and zeolite mixing was evaluated to be insignificant. To evaluate the absorption rate, the mixture was designed to lower the W/B ratio of the existing mixture and set the substitution ratio of active hwangtoh and zeolite at 25%. The highest absorption ratio in the mortar with zeolite was evaluated, and the difference in absorption ratio between the remaining two mortar mixtures was small. The assessment of reduction performance of NOx considering the application of photocatalyst showed a clearly decreasing reduction behavior, even if they were the same mortar mixture. Zeolite and active hwangtoh also showed a higher NOx reduction than the Plain mixture, because of their porosity properties. In the case of active hwangtoh, the absorption ratio was lower than that of zeolite mixture, but the reduction of NOx performance was better than the result of zeolite mixture.

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide (다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.

Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing (3D 프린팅용 모르타르의 초기재령 수축거동 평가를 위한 실험적 연구)

  • Seo, Eun-A;Yang, Keun-Hyeok;Lee, Ho-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Since the 3D printing mortar is exposed to the atmosphere immediately after printing, moisture is largely evaporated from the surface of the layer. The evaporation of moisture on the surface of the layer greatly causes drying shrinkage and increases the risk of cracking and damage to the structure due to drying shrinkage. This study experimentally evaluated the shrinkage behavior of the initial age using the mortar used for 3D printing. The change in shrinkage was evaluated by comparing the shrinkage of the specimen cured by the sealing method and the atmospheric exposure method. In addition, compared with the case where type 1 cement was used 100%, the shrinkage amount was evaluated when 20% of fly ash was replaced and 10% of silica fume was used. In particular, the effect of three chemical admixtures applied using 3D printing on shrinkage was evaluated experimentally. When fly ash and silica fume were used, the shrinkage amount increased by 60 - 110% compared to the case when type 1 cement was used. The application of viscosity modifiers and shrinkage reducers reduced the shrinkage by at least 18% and at most 70% depending on the curing conditions. The temperature of the specimen temporarily decreased to 15 ℃ at the beginning of curing, and the correlation between the internal temperature of the specimen and the shrinkage behavior was observed.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Physicochemical Changes of Vinegars Obtained from Bamboo and Wood during Long Term Aging (장기간 숙성에 따른 죽초 및 목초액의 이화학적 변화)

  • Ku, Chang-Sub;Mun, Sung-Phil;Park, Sang-Bum;Kwon, Su-Duk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.74-79
    • /
    • 2002
  • Three different kinds of the crude vinegars obtained from oak(Quercus serrata), bamboo(Phyllostachys pubescens) and pine(Pinus densiflora) species were stored for approximately one year and periodically analyzed to monitor their physicochemical changes. Small changes in physical properties, such as the pH, specific gravity and amount of organic acids as well as water-soluble tar were observed in the entire course of aging period. However, the color difference of the vinegars showed a remarkable change between 7 and 10 months. In addition, these vinegars' colors changed from light yellowish orange to much deeper purple and orange during this period. The amount of organic acids and neutral compounds(dihydro-2(3H)-furanone, furfural, furfuryl alcohol, 2-hydroxy-1-methyl-1-cyclopenten-3-one, 1-hydroxy-2-propanone and methanol) in the vinegars increased or decreased periodically every three months. A good linear relationship (correlation coefficient of ca. 0.92) was obtained between the amount of organic acids and the amount of neutral compounds in such changes. However, although the amount of phenols increased or decreased periodically, its amount was decreased over the entire aging.

Estimation Error and Reliability of Measuring Unit Water Content Test Methods for Fresh Concrete Depending on Mix Design Factors at the Laboratory Level (실험실 수준에서 배합변수별 굳지 않은 콘크리트 단위수량 실험방법의 추정오차 및 신뢰성 검토)

  • Park, Min-Yong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.101-110
    • /
    • 2022
  • In this study, water content tests were performed on various fresh concretes subjected to different binder compostions to review the estimation errors and reliability of water content test methods. Micro-oven drying method, air-meter method, capacitance method and microwave penetration method were used to estimate water content of fresh concrete. Errors in water content estimation were analyzed by each test method. Regardless of the test method of water content, the estimation error was less than 5 %, and in the case of the test using mortar, the error in the estimation value was relatively large. In addition, based on the test results of water content of various concrete, the probability density function in which the estimation error for each test method becomes the population was analyzed. Water content test methods of fresh concrete which using concrete samples showed high estimate reliability of 97 % within the estimation error range of ± 10 kg/m3. On the other hand, the reliability of water content test method using mortar samples was lower.