• Title/Summary/Keyword: 키워드 기반

Search Result 1,111, Processing Time 0.031 seconds

Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis (Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축)

  • Jeon, Ye-Seul;Kim, Jeong-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • Hotel review data can extract various information that includes purchasing factors that lead to consumption, advantages, and disadvantages for hotels. In particular, the sentiment keyword of the review data helps consumers understand the pros and cons of hotels. However, it is not efficient for consumers to read a large number of reviews. Therefore, it is necessary to offer a summary review to customers. In this study, we suggest providing summary information on sentiment keywords association as well as a network of hotels based on sentiment keywords. Based on a sentiment keyword dictionary, the extracted sentiment keywords associations construct the hotel network through topological data analysis based mapper. This hotel network allows a consumer to find some hotels associated with specific sentiment keywords as well as recommends the same related hotels. This summary information provides users with a summarized emotional assessment of hotels and helps hotel marketing teams understand consumers' perceptions of their hotel.

Improvement of the Semantic Information Retrieval using Ontology and Spearman Correlation Coefficients (온톨로지 기술과 스피어만 상관계수를 적용한 시맨틱 정보 검색 향상)

  • Lee, Byungwook
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.351-357
    • /
    • 2013
  • Information retrieval by query keywords have some mismatching problems to fit user's requirement for the retrieved documents due to the varieties of users. These problems are originated from the different situations and characteristics of user's requirement. Also, it has a problem that general correlation coefficients did not display the information relations. In this thesis, it is to suggest knowledge retrieval system to verify feasibility of personnel selection procedure and results supporting selection rules after construction of personnel selection ontologies and rules composed of various concept and knowledge based on the semantic web technology. In the suggested system, it is to clear disadvantages of limited information retrieval providing the suitable information to satisfy user's different situations and characteristics using Spearman's coefficients. Experimental results by this semantic-based information retrieval show 90.3% of accuracy and 71.8% of recall compared with legacy keyword information retrieval.

Keyword-based networked knowledge map expressing content relevance between knowledge (지식 간 내용적 연관성을 표현하는 키워드 기반 네트워크형 지식지도 개발)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.119-134
    • /
    • 2018
  • A knowledge map as the taxonomy used in a knowledge repository should be structured to support and supplement knowledge activities of users who sequentially inquire and select knowledge for problem solving. The conventional knowledge map with a hierarchical structure has the advantage of systematically sorting out types and status of the knowledge to be managed, however it is not only irrelevant to knowledge user's process of cognition and utilization, but also incapable of supporting user's activity of querying and extracting knowledge. This study suggests a methodology for constructing a networked knowledge map that can support and reinforce the referential navigation, searching and selecting related and chained knowledge in term of contents, between knowledge. Regarding a keyword as the semantic information between knowledge, this research's networked knowledge map can be constructed by aggregating each set of knowledge links in an automated manner. Since a keyword has the meaning of representing contents of a document, documents with common keywords have a similarity in content, and therefore the keyword-based document networks plays the role of a map expressing interactions between related knowledge. In order to examine the feasibility of the proposed methodology, 50 research papers were randomly selected, and an exemplified networked knowledge map between them with content relevance was implemented using common keywords.

Social network analysis of keyword community network in IoT patent data (키워드 커뮤니티 네트워크의 소셜 네트워크 분석을 이용한 사물 인터넷 특허 분석)

  • Kim, Do Hyun;Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.719-728
    • /
    • 2016
  • In this paper, we analyzed IoT patent data using the social network analysis of keyword community network in patents related to Internet of Things technology. To identify the difference of IoT patent trends between Korea and USA, 100 Korea patents and 100 USA patents were collected, respectively. First, we first extracted important keywords from IoT patent abstracts using the TF-IDF weight and their correlation and then constructed the keyword network based on the selected keywords. Second, we constructed a keyword community network based on the keyword community and performed social network analysis. Our experimental results showed while Korea patents focus on the core technologies of IoT (such as security, semiconductors and image process areas), USA patents focus on the applications of IoT (such as the smart home, interactive media and telecommunications).

Preference-based search technology for the user query semantic interpretation (사용자 질의 의미 해석을 위한 선호도 기반 검색 기술)

  • Jeong, Hoon;Lee, Moo-Hun;Do, Hana;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Typical semantic search query for Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. Existing keyword-based retrieval system is Preference for the semantic interpretation of a user's query is not the meaning of the user keywords of interconnect, you can not search. In this paper, we propose a method that can provide accurate results to meet the user's search intent to user preference based evaluation by ranking search. The proposed scheme is Integrated ontology-based knowledge base built on the formal structure of the semantic interpretation process based on ontology knowledge base system.

A Study of High Speed Retrieval Algorithm of Long Component Keyword (복합키워드의 고속검색 알고리즘에 관한 연구)

  • Lee Jin-Kwan;Jung Kyu-cheol;Lee Tae-hun;Park Ki-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1769-1776
    • /
    • 2004
  • Effective keyword extraction is important in the information search system and there are several ways to select proper keyword in many keywords. Among them, DER Structure for AC Algorithm to search single keyword, can search multiple keywords but it has time complexity problem. In this paper, we developed a algorithm, "EDER structure" by expanding standalone search table based on DER structure search method to improve time complexity. We tested the algorithm using 500 text files and found that EDER structure is more efficient than DER structure for AC for keyword posting result and time complexity that 0.2 second for EDER and 0.6 second for DER structure,structure,

Concept-based Compound Keyword Extraction (개념기반 복합키워드 추출방법)

  • Lee, Sangkon;Lee, Taehun
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.23-31
    • /
    • 2003
  • In general, people use a key word or a phrase as the name of field or subject word in document. This paper has focused on keyword extraction. First of all, we investigate that an author suggests keywords that are not occurred as contents words in literature, and present generation rules to combine compound keywords based on concept of lexical information. Moreover, we present a new importance measurement to avoid useless keywords that are not related to documents' contents. To verify the validity of extraction result, we collect titles and abstracts from research papers about natural language and/or voice processing studies, and obtain the 96% precision in a top rank of extraction result.

  • PDF

Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling (텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석)

  • Kwak, Soo Jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, we investigate important keywords and their relationships among the keywords for social issues, and analyze topics to find subjects of the social issues. In particular, we collected twitter data with the keyword 'metoo' which has attracted much attention in these days, and perform keyword analysis and topic modeling. First, we preprocess the twitter data, identified important keywords, and analyzed the relatedness of the keywords. After then, topic modeling is performed to find subjects related to 'metoo'. Our experimental results showed that relatedness of keywords and subjects on social issues in twitter are well identified based on keyword analysis and topic modeling.

Patent data analysis using clique analysis in a keyword network (키워드 네트워크의 클릭 분석을 이용한 특허 데이터 분석)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1273-1284
    • /
    • 2016
  • In this paper, we analyzed the patents on machine learning using keyword network analysis and clique analysis. To construct a keyword network, important keywords were extracted based on the TF-IDF weight and their association, and network structure analysis and clique analysis was performed. Density and clustering coefficient of the patent keyword network are low, which shows that patent keywords on machine learning are weakly connected with each other. It is because the important patents on machine learning are mainly registered in the application system of machine learning rather thant machine learning techniques. Also, our results of clique analysis showed that the keywords found by cliques in 2005 patents are the subjects such as newsmaker verification, product forecasting, virus detection, biomarkers, and workflow management, while those in 2015 patents contain the subjects such as digital imaging, payment card, calling system, mammogram system, price prediction, etc. The clique analysis can be used not only for identifying specialized subjects, but also for search keywords in patent search systems.

KNetIRS : Information Retrieval System using Keyword Network (KNetIRS : 키워드망을 이용한 정보검색 시스템)

  • Woo, Sun-Mi;Yoo, Chun-Sik;Lee, Chong-Deuk;Kim, Yong-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2185-2196
    • /
    • 1997
  • The existing information retrieval systems utilize thesaurus in order to search and retrieve the desired information even when the query is not accurate. However the cost for implementing and maintaining thesaurus is very high and it can not guarantee complete success of search/retrieval operation. Thus in this paper, Information Retrieval System using Keyword Network(KNetIRS) which was designed and implemented to solve these problem is introduced. Keyword Network composed of keywords which were extracted from documents. KNetIRS finds the appropriate documents by using the Keyword Network which is based on the concept of "inverted file". In addition, KNetIRS can carry out query expansion by using the Keyword Network Browser, and deal with the conjunction of "정보 검색", "정보", and "검색", by defining and implementing spilt function.

  • PDF