• Title/Summary/Keyword: 키네신

Search Result 4, Processing Time 0.024 seconds

Sequences and Phylogenic Analysis of Squid New Kinesin Superfamily Proteins (KIFs) (오징어과의 Kinesin Superfamily Proteins (KIFs)의 유전자분석 및 계통분석)

  • Kim, Sang-Jin;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.293-297
    • /
    • 2012
  • The movement of vesicles from the neuronal cell body to specific destinations requires molecular motors. The squid giant axon represents a powerful model for studies of the axonal transport mechanism because the axoplasm can readily be separated from the sheath by simple extrusion. In a previous study, vesicular movements in the axoplasm of the squid giant axon were inhibited by the kinesin antibody. In the present study, we cloned and sequenced the cDNAs for squid brain KIFs. Amplification of the conserved nucleotide sequences of the motor domain by polymerase chain reaction (PCR) using first-strand cDNAs of the squid optic lobe identified six new KIF proteins. Motif analysis of the motor domains revealed that the squid KIFs are homologous to the consensus sequences of the mouse KIFs. The phylogenetic tree generated by using the maximum parsimony (MP) method, the neighbor-joining (NJ) method, the minimum evolution (ME) method, and the maximum likelihood (ML) method showed that squid KIFs are closest to mouse KIFs. These data prove the phylogenetic relationships between squid KIFs and mouse ones.

Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1 (Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합)

  • Myoung Hun Kim;Se Young Pyo;Eun Joo Chung;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.333-338
    • /
    • 2024
  • Kinesin-1 is a heterotetrameric protein composed of two heavy chains (KHCs, also known as KIF5s) with a motor domain and two light chains (KLCs) without a motor domain. KIF5 has three subtypes, namely, KIF5A, KIF5B, and KIF5C, which share high amino acid homology except in their carboxy (C)-terminal region. KIF5A is responsible for transporting cargo within the cell. The adaptor proteins that bind to the C-terminal region of KIF5A mediate between kinesin-1 and cargo. However, the proteins regulating the intracellular cargo transport of kinesin-1 have not yet been fully identified. In this study, we identified ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1), which is involved in the intracellular trafficking of lysosomes, as a binding partner of KIF5A. KIF5A binds to the C-terminal region of ArfGAP1, and ArfGAP1 binds to the C-terminal region of KIF5A but does not interact with KIF5B, KIF5C, kinesin light chain 1 (KLC1), or KIF3A. When co-expressed in mammalian cells, ArfGAP1 co-localized with KIF5A and co-immunoprecipitated with KIF5A, KIF5B, and KLC1, but not with KIF3B. These results suggest that kinesin-1 may be regulated by ArfGAP1 in the intracellular transport of cargo.

Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s (KIF5s와 직접 결합하는 액틴 결합 운동단백질 Myo9s의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1076-1082
    • /
    • 2011
  • Microtubule-based kinesin motor proteins are used for long-range vesicular transport. KIF5s (KIF5A, KIF5B and KIF5C) mediate the transport of various membranous vesicles along microtubules, but the mechanism behind how they recognize and bind to a specific cargo has not yet been completely elucidated. To identify the interaction protein for KIF5B, yeast two-hybrid screening was performed and a specific interaction with the unconventional myosin Myo9b, an actin-based vesicle transport motor, was found. The GTPase-activating protein (GAP) domain of Myo9s was essential for interaction with KIF5B in the yeast two-hybrid assay. Myo9b bound to the carboxyl-terminal region of KIF5B and to other KIF5 members. In addition, glutathione S-transferase (GST) pull-downs showed that Myo9s specifically interact to the complete Kinesin-I complex. An antibody to KIF5B specifically co-immunoprecipitated KIF5B associated with Myo9s from mouse brain extracts. These results suggest that kinesin-I motor protein interacts directly with actin-based motor proteins in the cell.

The STAR RNA Binding Proteins SAM68, SLM-1 and SLM-2 Interact with Kinesin-I (Kinesin-I과 직접 결합하는 STAR RNA 결합 단백질인 SAM68, SLM-1과 SLM-2의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1226-1233
    • /
    • 2011
  • In neurons, kinesin is the molecular motor that transport cargos along microtubules. KIF5s (alias kinesin-I), are heterotetrameric motor conveying cargos, but the mechanism as to how they recognize and bind to a specific cargos has not yet been completely elucidated. To identify the interaction proteins for KIF5C, yeast two-hybrid screening was performed, and specific interaction with the $\underline{S}$am68-$\underline{l}$ike $\underline{m}$ammalian protein $\underline{2}$ (SLM-2), a member of the $\underline{s}$ignal $\underline{t}$ransducers and $\underline{a}$ctivators of $\underline{R}$NA (STAR) family of RNA processing proteins, was found. SLM-2 bound to the carboxyl (C)-terminal region of KIF5C and to other KIF5 members. The C-terminal domain of Sam68, SLM-1, SLM-2 was essential for interaction with KIF5C in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that SAM68, SLM-1, and SLM-2 specifically interacted to Kinesin-I complex. An antibody to SAM68 specifically co-immunoprecipitated SAM68 associated with KIF5s and coprecipitated with a specific set of mRNA. These results suggest that Kinesin-I motor protein transports RNA-associated protein complex in cells.