남강은 낙동강 주요 지류인 동시에 낙동강 하류지역의 유지용수, 생활, 공업, 농업용수 공급 등에 중요 역할을 하고 있어 오염원 및 수질관리가 매우 중요하다고 볼 수 있다. 최근 남강댐 하류 및 남강합류 후 낙동강 본류인 창녕함안보 지점에서의 녹조 발생이 빈번해지고 있으며, 녹조현상에 대한 관심과 우려가 높아지고 있는 실정이다. 따라서 기존 호소의 녹조관리는 '조류경보제'에 의해서 관리되고 있지만 4대강 16개의 보 건설 이후 '수질예보제'와 같이 녹조관리를 위한 제도 및 정책이 시행되면서 조류관리의 중요성이 대두되고 있다. 본 연구에서는 기존의 많은 문헌들을 참고하여 조류의 영향인자를 파악하였으며, 남강유역의 물관리 기초자료를 수집하고 구축된 데이터 기반의 각 항목별 주요항목 영향인자 분석을 위한 상관성 분석을 실시하여 영향인자별 상관관계 우선순위를 선정하여 입력변수로 이용하였다. 그에 따른 데이터 마이닝을 통한 조류 발생특성을 고려하여 예측 모형인 다중회귀분석(Multiple Regression Analysis)을 구현하였다. 회귀분석 과정에서 다중공선성이 발생하는 변수에 대해서는 모형에서 제거하였으며, 잔차분석을 통해 이상치와 영향치를 검토하여 고려하였다.
낙동강 하류지점인 물금은 2003년${\sim}$2005년의 대부분이 부영양화의 기준을 넘고 있다. 하구둑 건설이후, 담수화 된 하구둑 상부에서는 부영양화가 가속화되었다. 수질의 악화는 물론 강 생태계의 구조와 기능의 변화까지 초래되었다. 지난 $7{\sim}8$년 간 낙동강 하류 지역은 갈수기 식물성 플랑크톤 군집의 대거 번성으로 인한 부영양화로 연중 심각한 수질 오염문제를 야기하고 있다. 본 연구는 WASP 7.2 모형과 예측된 동물성플랑크톤을 이용하여 낙동강 유역의 하류 지역인 물금의 부영양화를 예측하는 것이다. 2005년의 관측값을 초기조건으로 고정하고 DO, $NO_3$-N, $PO_4$-P, 기상청에서 예보되는 기온을 사용하여 동물성 플랑크톤을 신경망 모형으로 예측한 뒤, 수온 대신 기상청의 기온을 입력하여 $1{\sim}3$일 후의 단기 수질을 예측하였다. 부영양화 예측결과와 2005년의 월별 수질 관측값을 통계량을 이용하여 분석하였다. $1{\sim}3$일 후의 예측결과 수질항목 중 부영양화의 기준이 되는 클로로필-a, 총 질소, 총 인의 경우는 예측기간 모두 관측값에 적합하게 모의되었다. WASP 7.2 모형의 수질항목 관측자료를 초기값으로 입력하고, 예측된 동물성 플랑크톤의 개체수와 기상청에서 예보되는 기온을 사용한 수질모의는 낙동강의 단기 수질예측에 유의한 의미가 있을 것으로 사료된다.
The Southern Ocean (SO) plays a primary role in global climate by storing and transporting anthropogenic carbon dioxide through the meridional overturning circulation and the biological pumping process. In this study, we aim to investigate interannual variability of summer chlorophyll concentration in the SO and its relation with the El $Ni{\tilde{n}}o$ Southern Oscillation (ENSO), using satellite ocean color data covering 16 years from 1997 to 2012. During El $Ni{\tilde{n}}o$ periods, chlorophyll concentration tends to increase in the subtropics (north of the subantarctic front). This chlorophyll increase is likely linked to El $Ni{\tilde{n}}o$-induced surface cooling that increases nutrient supply through enhanced vertical mixing in the subtropics. On the other hand, the subpolar gyres show localized chlorophyll changes in response to the ENSO. The localized response seems to be primarily attributed to changes in sea-ice concentrations. Our findings suggest that ENSO contributes interannual variability of chlorophyll in the SO through different mechanisms depending on regions.
인삼 엽록차의 위생화를 위한 화학 훈증제 처리 및 감마선 조사가 시료의 몇가지 이화학적 특성에 미치는 영향을 조사하였다. 녹차의 품질에 관련된 가용성분, 사포닌 및 탄닌성분은 상업적 조건 ethylene oxide 처리와 10kGy 까지의 감마선 조사에 대하여 안정하였다. 그러나 비타민 C 및 클로로필은 5kGy 이상 조사와 훈증 처리시에 유의적으로 감소되었고, 녹차의 휘발성 성분, 추출액의 색도 및 pH는 살균선량 범위인 5kGy 조사군에 비해 훈증처리군에서 변화가 심하게 나타났다 .
1981년 하계중 진해만에서는 3차에 걸친 대규모의 적조가 있었다. 이들 적조는 그 규모나 원인종, 농도, 머문기간에 있어 남해안궤서 그 유예가 없었던 악성적조었다. 그로 인한 수산물 피해액만도 약 17억3천4백만으로 추정되었다. 1차 적조는 7월 18, 19일부터 시작되어 7월말까지 계속되었으며, 2차는 8월중순에 그리고 3차는 9월초순에 있었다. 주 원인종은 와편모조의 일종인 Gymnodinium sp.로서 외부형태로 보아 1963년 일본 대촌만에서 있었던 적조의 원인종인 Gymnodinium 65년도형과 유사하였으나 확인할 수는 없었다. 적조시의 수색은 암갈색이었고 세포양은 주로 표면에서 수심 악 2m층까지 농밀하여 심한 경우 투명도는 0.1 m이었다. 최고세포수는 약 20만cells/ml 이었고 이때 클로로필-a양은 약 $1,000mg/m^3$ 이었다. 용존산소양은 $2\sim3ml/1$인 경우가 많았고 최하 1ml/l이 발견되었다. 1차 적조 후기핀 양식굴 및 흥합의 폐사가 나타났고 2차 적조가 사라진8월 16, 17일에는 게. 고동. 새우유 등과 양태류, 볼락, 까나리 등의 사체가 조류에 밀려 해안에서 발견되었다. 금번 적조의 특징은 원인종이 악성인 Gymnodinium sp. 이고 내년에도 재발할 수 있는 가능성이 있다는 점이다. 발생원인은 일본 대촌만 적조의 경우처럼 다우후 고온의 지속과 저이중 다양의 유화물이 주요인자라 추측된다.
본 연구에서는 대하천의 8개의 수질인자(수온, 용존산소, 수소이온농도, 전기전도도, 총질소, 총인, 탁도, 클로로필-a)를 예측할 수 있는 인공신경망모델을 개발하였다. 인공신경망모델(ANN)은 수질데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 데이터기반 모델이다. 데이터기반 모델의 특성상 예측정확도를 높이기 위해서 양질의 입력데이터를 구성하는 것이 가장 중요하다. 때문에 각각의 수질인자뿐만 아니라 기상학적 인자 또한 예측을 위한 입력자료로 사용하였으며, 요인분석 및 층화표층추출법을 적용하여 입력데이터를 구성하였고 앙상블기법을 이용하여 추가적으로 예측의 정확도를 향상시켰다. 개발된 모델을 이용하여 지천유입이 있는 북한강의 수질자료를 예측한 결과 탁도를 제외한 7개의 수질인자 모두 0.85 이상의 설명력을 보였으며, 실측값과 예보값을 비교해본 결과 평균적으로 10% 미만의 에러값을 나타냈다. 요인분석을 통하여 연관성있는 인자를 입력인자로 추가한 경우 향상된 결과값을 보였주었으며, 앙상블기법을 적용한 결과 정확도 면에서 큰 향상을 보여주었다.
최근 호내 조류문제가 심각해지고 있는 상황이다. 2017년도에는 남강댐의 조류경보 발령이 동절기인 12월까지 지속됨에 따라 지역 사회의 수질관리 불안이 커지고 있다. 본 연구에서는 호내 조류생장과 수심에 따라 수질에 관하여 연구하였다. 남강댐을 포함하고있는 남강댐 중권역은 경호강으로부터 남강댐까지 해당하며, 낙동강 전체 면적에 7.2%에 달하는 $2.293km^2$의 유역면적을 가지는 중권역이다. 남강댐 중권역에서 광역 및 지방을 포함하는 취수장이 총 10개 이며, 남강댐 중권역 내취수량의 95% 이상을 차지하는 남강 취수원과 진주 취수원이 남강댐 호소수에 의존하고 있으므로 남강댐 상수원의 수질 관리는 매우 중요하다. 그러므로 남강댐의 효과적인 수질관리를 위해 호내 조류 생장 구간의 특성을 파악하여 수질변화에 관한 연구가 필요하다. 본 연구에서는 남강댐 내의 조류 생장 구간인 오미천 유입부와 신풍리 지류 합류부 두 구간의 수심별 pH, DO, EC, 세포수, 클로로필을 측정하여 비교하였으며, 두 구간의 특성을 비교 분석 하였다. 본 연구는 조류 생장 구간인 두 지점의 특성을 파악에 비교 분석하며, 수심별 수질 변화를 예측하여 상수원으로 이용되고 있는 남강댐 호내의 수질관리에 필요한 선행 자료가 되고자 하였다.
Chlorophyll-a is a major water quality indicator for an algal bloom in streams and lakes. The purpose of the study is to estimate chlorophyll-a concentration in tributaries of the Seonakdonggang by an artificial neural network (ANN). As the tributaries are ungauged streams, a watershed runoff and quality model was used to simulate water quality parameters. The tributary watersheds include urban area and thus Storm Water Management Model (SWMM) was used to simulate TN, TP, BOD, COD, and SS. SWMM, however, can not simulate chlorophyll-a. The chlorophyll-a series data from the tributaries were estimated by the ANN and the simulation results of water quality parameters using SWMM. An assumption used is as follows: the relation between water quality parameters and chlorophyll-a in the tributaries of the Seonakdonggang would be similar to that in the mainstream of the Seonakdonggang. On the assumption, the measurement data of water quality and chlorophyll-a in the mainstream of the Seonakdonggang were used as the learning data of the ANN. Through the sensitivity analysis, the learning data combination of water quality parameters was determined. Finally, chlorophyll-a series were estimated for tributaries of the Seonakdonggang by the ANN and TN, TP, BOD, COD, and temperature data from those streams. The relative errors between the estimated and measured chlorophyll-a were approximately 40 ~ 50%. Though the errors are somewhat large, the estimation process for chlorophyll-a may be useful in ungauged streams.
The purpose of this study is to evaluate the nutritional status of Lake Jinyang using Landsat 8 satellite image band correlated with chlorophyll-a, which is also related to algae proliferation. We selected 20 Landsat 8 images dating from 2013 to 2017, taken close to water quality measurement date when the cloud cover was less than 20 %. Based on the results of the previous studies, analyzing the correlation between chlorophyll-a, and Landsat 8 satellite image band, we selected near infrared wavelength, band 5 which is closely related to the population of algae. The nutritional status was classified using the Aizaki trophic state index (TSIm). The results of the regression equation between band 5 and the observed chlorophyll-a data was used to calculate chlorophyll-a for the image data from 2013 to 2017. The concentration of chlorophyll-a ranged from 3 to $16.1mg/m^3$. To illustrate the spatial distribution of chlorophyll-a within the lake, the chlorophyll-a concentration was divided into five grades. The images on October 14, 2014 and April 10, 2016 showed relatively high value of chlorophyll-a, while January 18, 2015 and December 6, 2016 chlorophyll-a value were below 5. The images on October 14, 2014 and April 10, 2016 were rated as eutrophic status in most areas. The results of simulating water quality for the day when the water quality was not measured resulted to an approximate value for the Panmun station while the Naedong station needed some corrections.
Accurate assessment of chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing is challenging due to the optical complexity of case 2 waters. and the inherent optical properties (IOPs) of natural waters are the most significant factors affecting light propagation within water columns, and thus play indispensable roles on estimation of Chl-a concentrations. Despite its importance, no IOPs retrieval model was specifically developed for inland water bodies, although significant efforts were made on oceanic inversion models. So we have applied and validated a recently developed Red-NIR three-band model and an IOPs Inversion Model for estimating Chl-a concentration and deriving inland water IOPs in Lake Uiam. Three band and IOPs based Chl-a estimation model accuracy was assessed with samples collected in different seasons. The results indicate that this models can be used to accurately retrieve Chl-a concentration and absorption coefficients. For all datasets the determination coefficients of the 3-band models versus Chl-a concentration ranged 0.65 and 0.88 and IOPs based model versus Chl-a concentration varied from 0.73 to 0.83 respectively. and Comparison between 3-band and IOPs based models showed significant performance with decrease of root mean square error from 18% to 33.6%. The results of this study provides the potential of effective methods for remote monitoring and water quality management in turbid inland water bodies using hyper-spectral remote sensing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.