• Title/Summary/Keyword: 클로랄하이드레이트

Search Result 6, Processing Time 0.028 seconds

Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성)

  • Bae, Sang-Dae;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.218-224
    • /
    • 2008
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested to evaluate adsorption and biodegradation performances of chloral hydrate. In the early stage of the operation, the adsorption was the main mechanism for the removal of chloral hydrate, however as increasing populations of attached bacteria, the bacteria played a major role in removing chloral hydrate in the activated carbon and anthracite biofilter. It was also investigated that chloral hydrate was readily subjected to biodegrade. The coal- and coconut-based activated carbons were found to be most effective adsorbents in adsorption of chloral hydrate. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria was inhibited in the removal of chloral hydrate at temperatures below 10$^{\circ}C$. It was more active at higher water temperatures(20$^{\circ}C$ <) but less active at lower water temperature(10$^{\circ}C$>). The removal efficiencies of chloral hydrate obtained by using four different adsorbents were directly related to the water temperatures. Water temperature was the most important factor for removal of chloral hydrate in the anthracite biofilter because the removal of chloral hydrate depended mainly on biodegradation. Therefore, the main removal mechanism of chloral hydrate by applying activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that the application of coalbased activated carbon to the water treatment should be the best for the removal of chloral hydrate.

Characteristics of Disinfection By-Products Formation in Korea (국내 정수장의 소독부산물 생성 특성)

  • Kim, Jinkeun;Jeong, Sanggi;Shin, Changsoo;Cho, Hyukjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2005
  • The characteristics of disinfection by-products (DBPs) formation at 28 water treatment plants in Korea were investigated. Investigated species of DBPs were trihalomethanes (THMs), haloacetic acids (HAAs) and chloral hydrate (CH). The maximum concentration of THMs was $84.1{\mu}g/L$, minimum and the averages were $6.9{\mu}g/L$ and $27.8{\mu}g/L$, respectively; the maximum concentration of $HAA_5$ was $90.8{\mu}g/L$, minimum and the averages were $3.8{\mu}g/L$ and $26.7{\mu}g/L$, respectively; while the maximum concentration of CH was $29.5{\mu}g/L$, minimum and the averages were $0.5{\mu}g/L$ and $7.4{\mu}g/L$, respectively. On the other hand, DBPs levels during summer months, when the water temperature was near $25^{\circ}C$, were nearly twice as great as DBPs levels during the winter season. The ratio of $THMs/HAA_5$ was 1.07, and $HAA_5$ and THMs were the dominant species of DBPS in the Kum-Sumjin river and Nakdong river, respectivley.

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Characteristics of Chlorination Byproduct Formation of Synthetic Nitrogenous Compounds (합성유기질소 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Hwang, Young-Do;Roh, Jae-Soon;Bean, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.523-530
    • /
    • 2010
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from 14 synthetic nitrogen compounds with or without $Br^-$. 5 of 14 compounds were 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline that were relatively shown high for formation of THMs/DOC whether or not $Br^-$ presented. 6 compounds that were p-nitrophenol, 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Trichloroacetic acid (TCAA) was dominated in 6 compounds. The formation of haloacetonitriles (HANs)/DOC whether or not $Br^-$ presented was high in 3-aminobenzoic acid, 2-aminophenol, aniline and anthranilic acid. Specially, aniline was detected 14.6∼16.1 ${\mu}g/mg$. The formation of chloral hydrate (CH)/DOC and chloropicrin (CP)/DOC were shown high in 3-aminobenzoic acid and 2-aminophenol in 14 compounds. 6 compounds (3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid, 4-nitroaniline, p-nitrophenol) and a commercial humic acid were tested for the formation of DBPs/DOC whether or not $Br^-$ presented. When $Br^-$ was added, the DBPs/DOC was higher for the order of aniline> anthranilic acid> 3-aminobenzoic acid> 4-nitroaniline> humic acid> p-nitrophenol> 2-aminophenol. And when $Br^-$ was not added, the DBPs/DOC was higher for the order of anthranilic acid> aniline> p-nitrophenol> humic acid> 4-nitroaniline> 3-aminobenzoic acid> 2-aminophenol.

Is it Impossible to Replace Chloral Hydrate in Dental Sedation of Pediatric Dentistry in Korea? (진정법에서 클로랄 하이드레이트의 대안은 무엇일까?)

  • Han, Miran;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.228-234
    • /
    • 2020
  • Chloral hydrate (CH) has been used in sedation for over 100 years. CH was first synthesized in 1832, the sedative properties were observed in 1861. Because of its easy synthesis, its use was widespread since 1869. There is a record of the use of CH in children as early as 1894. Recently there have been many controversies about safety of CH. Because of the low cost and relatively safe experience CH has still been used for dental sedation in children. After the US FDA recommendation in 2006, US pharmaceutical companies no longer produce commercial CH. However, CH has been used in the form of suspensions prepared from raw materials in many areas of the United States, and reports of adverse events related to death have continued. CH is the most commonly used drug for sedation in Korea, and there have been some reports of side effects. Dexmedetomidine, propofol and midazolam were introduced as an alternative for CH. There are various limitations in using them in the pediatric dentistry area and there are many things to consider. The purpose of this review is to analyze the complications of CH and status of use in Korea, and to introduce alternatives to CH.

Trends in Dental Sedation of Korean Children and Adolescents (한국 소아 청소년의 치과 치료 시 진정법 경향)

  • Tak, Minkyung;Kim, Jaegon;Yang, Yeonmi;Lee, Daewoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.313-323
    • /
    • 2021
  • The purpose of this study was to investigate trends in dental sedation of Korean children and adolescents. A retrospective study was conducted on patients under 20 years of age who received dental treatment under sedation using National Health Insurance Service-National Sample Cohort Database from 2002 to 2015. Based on the 1 million standard data, there were 436 cases of dental treatment under sedation in 2002, but 4002 cases in 2015, showing a trend increasing every year. The 3 - 5 year old group accounted for the largest portion (54.2%), while the 6 - 8 year old group increased recently. Nitrous oxide inhalation sedation is the most commonly used, accounting for 45.9% in 2002, but increased to 89.5% in 2015. Combination of nitrous oxide inhalation sedation, chloralhydrate and hydroxyzine was the most common, accounting for 5.7% in 2002, but decreased to 2.9% in 2015. There is a trend to use the sedation method more safely and in a way that reduces side effects.