• Title/Summary/Keyword: 클러스터-헤드

Search Result 368, Processing Time 0.027 seconds

Communication Protocol to Support Mobile Sinks by Multi-hop Clusters in Wireless Sensor Networks (무선 센서 네트워크에서 멀티-홉 클러스터를 통한 이동 싱크 지원 통신 프로토콜)

  • Oh, Seung-Min;Jung, Ju-Hyun;Lee, Jeong-Cheol;Park, Ho-Sung;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • In wireless sensor networks(WSNs), the studies that support sink mobility without global position information exploit a Backbone-based Virtual Infrastructure (BVI) which considers one-hop clusters and a backbone-based tree. Since the clusters of a sink and a source node are connected via flooding into the infrastructure, it causes high routing cost. Although the network could reduce the number of clusters via multi-level clusters, if the source nodes exist at nearest clusters from the cluster attached by the sink and they are in different branches of the tree, the data should be delivered via detour paths on the tree. Therefore, to reduce the number of clusters, we propose a novel multi-hop cluster based communication protocol supporting sink mobility without global position information. We exploit a rendezvous cluster head for sink location service and data dissemination but the proposed protocol effectively reduces data detour via comparing cluster hops from the source. Simulation shows that the proposed protocol is superior to the existing protocols in terms of the data delivery hop counts.

i-LEACH : Head-node Constrained Clustering Algorithm for Randomly-Deployed WSN (i-LEACH : 랜덤배치 고정형 WSN에서 헤더수 고정 클러스터링 알고리즘)

  • Kim, Chang-Joon;Lee, Doo-Wan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.198-204
    • /
    • 2012
  • Generally, the clustering of sensor nodes in WSN is a useful mechanism that helps to cope with scalability problem and, if combined with network data aggregation, may increase the energy efficiency of the network. The Hierarchical clustering routing algorithm is a typical algorithm for enhancing overall energy efficiency of network, which selects cluster-head in order to send the aggregated data arriving from the node in cluster to a base station. In this paper, we propose the improved-LEACH that uses comparably simple and light-weighted policy to select cluster-head nodes, which results in reduction of the clustering overhead and overall power consumption of network. By using fine-grained power model, the simulation results show that i-LEACH can reduce clustering overhead compared with the well-known previous works such as LEACH. As result, i-LEACH algorithm and LEACH algorithm was compared, network power-consumption of i-LEACH algorithm was improved than LEACH algorithm with 25%, and network-traffic was improved 16%.

A Cluster Head Selection Scheme Considering Distance and Energy between The Nodes in Wireless Sensor Networks (무선센서망에서 노드간의 거리와 에너지를 고려한 클러스터 헤드 선출방법)

  • Son, Nam-Rye;Jeong, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.154-161
    • /
    • 2010
  • The properties of sensor node having a restricted energy in WSN have a difficult in various application fields to apply. Our paper proposed the cluster head selection which is an effective energy in order to manage in wireless sensor network. The proposed algorithm improves an energy efficient and is applied to various network environment considering energy capacity between cluster head and nodes and distance between cluster head and base station(sink node). By using the ns-2 simulator, we evaluate the performance of the proposed scheme in comparison with the original LEACH-C. Experimental results validate our scheme, showing a better performance than original LEACH-C in terms of the number of outliving nodes and the quantity of energy consumption as time evolves.

A Method for Constructing Multi-Hop Routing Tree among Cluster Heads in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 헤드의 멀티 홉 라우팅 트리 구성)

  • Choi, Hyekyeong;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.763-770
    • /
    • 2014
  • In traditional routing protocols including LEACH for wireless sensor networks, nodes suffer from unbalanced energy consumption because the nodes require large transmission energy as the distance to the sink node increase. Multi-hop based routing protocols have been studied to address this problem. In existing protocols, each cluster head usually chooses the closest head as a relay node. We propose LEACH-CHT, in which cluster heads choose the path with least energy consumption to send data to the sink node. In our research, each hop, a cluster head selects the least cost path to the sink node. This method solves the looping problem efficiently as well as make it possible that a cluster head excludes other cluster heads placed farther than its location from the path, without additional energy consumption. By balancing the energy consumption among the nodes, our proposed scheme outperforms existing multi-hop schemes by up to 36% in terms of average network lifetime.

Lifetime Improvement of Wireless Sensor Network using the Distribution of a Transmission Distance in the SEP (SEP에서 전송 거리 분배를 이용한 무선 센서 네트워크 수명 개선)

  • Lee, Chang-Hee;Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.133-138
    • /
    • 2015
  • In this paper, we propose a method for improving the lifetime of the sensor network SEP through the wireless sensor network divided into two spaces by reducing the transmission distance of the cluster head in the layer in the distance. With reference to the position information of the node, the base station divides the layer based on the midpoint of the nearest node and the furthest distance away from the base station node. And the cluster head in the outer layer far from the base station is transmitted the data to the base station via the cluster head in the inner layer base station to transmit data. That is, we are proposed the layered SEP by reducing the transmission distance of the cluster head in the outer layer for the energy consumption to a minimum. The proposed algorithm is verified by comparison with the existing SEP.

An Energy-Efficient Sensor Network Clustering Using the Hybrid Setup (하이브리드 셋업을 이용한 에너지 효율적 센서 네트워크 클러스터링)

  • Min, Hong-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Cluster-based routing is high energy consumption of cluster head nodes. A recent approach to resolving the problem is the dynamic cluster technique that periodically re-selects cluster head nodes to distribute energy consumption of the sensor nodes. However, the dynamic clustering technique has a problem that repetitive construction of clustering consumes the more energies. This paper proposes a solution to the problems described above from the energy efficiency perspective. The round-robin cluster header(RRCH) technique, which fixes the initially structured cluster and sequentially selects cluster head nodes, is suggested for solving the energy consumption problem regarding repetitive cluster construction. A simulation result were compared with the performances of two of the most widely used conventional techniques, the LEACH(Low Energy Adaptive Clustering Hierarchy) and HEED(Hybrid, Energy Efficient, Distributed Clustering) algorithms, based on energy consumption, remaining energy for each node and uniform distribution. The evaluation confirmed that in terms of energy consumption, the technique proposed in this paper was 26.5% and 20% more efficient than LEACH and HEED, respectively.

A Head Selection Algorithm with Energy Threshold in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 임계값을 활용한 헤드 선정)

  • Kwon, Soon-II;Roh, II-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.111-116
    • /
    • 2009
  • LEACH is a important hierarchical protocol in wireless sensor network. In LEACH, the head is randomly selected for balanced energy consume. In LEACH-C, the node that has more energy than the average value is selected for the network life cycle. However, the round continues, the improved protocol is needed because the energy and network are changed. In this paper, LEACH, LEACH-C is not considered the energy consumed in the round because of wasted energy and reduce the time for presenting a new round time was set. And proposed the new algorithm using the energy threshold for the cluster head selection and the round time. In simulation, we show the improved performance compared to existing protocols.

  • PDF

Dynamic Load Balancing using Execution Time Prediction on Cluster Systems (클러스터 시스템에서 실행시간 예측을 통한 동적 부하 균등화)

  • 윤완오;정진하;최상방
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.853-855
    • /
    • 2001
  • 네트워크 기술의 발전으로 저비용으로 고성능을 얻고자 하는 클러스터 시스템에 대한 연구가 많아지고 있다. SPMD(Single Program Multiple Data) 형태의 병렬 프로그램을 사용한 클러스터 시스템의 주된 성능 장애는 부하 불균등 현상이다 본 논문에서는 이러한 문제를 해결하기 위해 마스터 노드가 정보를 모으는 횟수와 주기를 시뮬레이션을 통해 최적의 값으로 결정하고 그 주기 동안에 각 노드의 태스크 당 평균 수행시간을 계산한다. 통신비용의 오버헤드를 고려한 시스템의 실행시간을 평균 수행시간으로 예측하여 각 노드가 이동할 태스크의 수를 결정하는 동적 부하 균등 알고리즘을 제안한다 제안한 알고리즘의 클러스터 시스템을 모델링하고 성능 분석을 위한 시뮬레이션을 한다.

  • PDF

Implementation of Inter-subjob communication for Grid applications on Clusters (클러스터 기반 그리드 응용의 부작업 간 통신 구현 사례)

  • 정평재;이윤석;조금원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.103-105
    • /
    • 2003
  • 클러스터 자원이 그리드 환경에서 효율적으로 운영되기 위해서는 클러스터를 구성하는 노드 간의 부하균형이 필요하며 이를 위해 실행 중 프로세스 이동은 당연히 지원되어야 한다. 그러나 대부분의 그리드 지원 환경에서는 작업 시작, 실행 중 동기화 과정 등에서 프로세스들의 실행 중 이동이 고려되지 않았으며, 프로세스의 이동을 지원한다 하더라도 TCP 소켓 이전 등의 오버헤드가 따른다. 본 연구에서는 클러스터 내의 프로세스들이 실행 중에 노드 간을 이동하더라도 상호 통신이 가능하도록 별도의 통신 지원 쓰레드를 설계하고, 이를 매개로 간접 통신이 이루어지도록 개선된 방법을 제안하였다.

  • PDF

A Study on the Robust Efficiency of a Cluster Head Election for USN (USN에서 클러스터헤드 선출의 강건한 효율성 연구)

  • Cho, Do-Hyeoun;Lee, Chul;Choi, Jin-Tek;Kim, Jin-Soo;Lee, Sang-Hun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.11-17
    • /
    • 2009
  • This study speak abut demerit of LEACH, EACHS, and HEED. There are demerits that LEACH, EACHS shall be rest energy of all nodes and HEED can't guarantee the number of cluster head. Proposed energy efficiency of selected cluster head guarantees the number of cluster head which is a demerit of HEED and minimizes the node of DEAD. Energy efficiency of simulation is compared by MA TLAB.