• Title/Summary/Keyword: 클러스터 신경망

Search Result 45, Processing Time 0.019 seconds

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

Enhanced FCM-based Hybrid Network for Pattern Classification (패턴 분류를 위한 개선된 FCM 기반 하이브리드 네트워크)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1905-1912
    • /
    • 2009
  • Clustering results based on the FCM algorithm sometimes produces undesirable clustering result through data distribution in the clustered space because data is classified by comparison with membership degree which is calculated by the Euclidean distance between input vectors and clusters. Symmetrical measurement of clusters and fuzzy theory are applied to the classification to tackle this problem. The enhanced FCM algorithm has a low impact with the variation of changing distance about each cluster, middle of cluster and cluster formation. Improved hybrid network of applying FCM algorithm is proposed to classify patterns effectively. The proposed enhanced FCM algorithm is applied to the learning structure between input and middle layers, and normalized delta learning rule is applied in learning stage between middle and output layers in the hybrid network. The proposed algorithms compared with FCM-based RBF network using Max_Min neural network, FMC-based RBF network and HCM-based RBF network to evaluate learning and recognition performances in the two-dimensional coordinated data.

Health Diagnosis System of Pet Dog Using ART2 Algorithm (ART2 알고리즘을 이용한 애견 진단 시스템)

  • Oh, Sei-Woong;Kim, Ji-Hong
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, we propose the diagnosis system that can predict pet's state of health for pet lovers lacking a technical knowledge of dog-diseases. The proposed system deduces diseases of dogs from input symptoms by our database constructed with 105 kinds of diseases and symptoms. First, a disease is clustered by ART2, the self-learning method in neural network and secondly, the result values, outputs and the weight values clustered by the algorithm are stored to database. Finally, our system diagnoses the state of health by means of comparing the learned information of diseases with the input vectors of each symptom and the related results of questions on diseases. The correct information of diseases and symptom diagnosing is important to predict the state of health of dogs. Therefore, in this paper, the proposed system can manage symptoms and diseases efficiently by database and ART2. We ask veterinary specialist with the efficiency of our system. As a result, we could confirm the possibility as the auxiliary diagnosis system for dog diseases.

  • PDF

Analysis of deep learning-based deep clustering method (딥러닝 기반의 딥 클러스터링 방법에 대한 분석)

  • Hyun Kwon;Jun Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.61-70
    • /
    • 2023
  • Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.