• Title/Summary/Keyword: 크립 기공

Search Result 6, Processing Time 0.018 seconds

The Creep Life Prediction Method by Cavity Area (기공의 면적에 의한 크립 수명예측법)

  • 홍성호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1455-1461
    • /
    • 1991
  • 본 연구에서는 Kachanov의 재료손상(material damage)모델을 이용하여 새로운 수명예측식을 만들고, 이 수명예측식의 타당성을 조사하기 위하여, 최근에 발표된 크 립 수명과 기공분포와의 실험결과와 비교하였다.

Creep Rupture Due to Molybdenum Rich $M_6C$ Carbide in 1.0Cr-1.0Mo-0.25V Steel Weldment (1.0Cr-1.0Mo-0.25V강 용접부의 $M_6C$ 탄화물에 의한 크립 파단)

  • O, Yeong-Geun;Kim, Byeong-Cheol;Gang, Gye-Myeong;Min, Tae-Guk
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1257-1262
    • /
    • 1996
  • 1.0Cr-1.0Mo-0.25V강 용접부의 크립 파단 시험시 파단 발생 원인에 관한 연구가 시행되었다. 파괴는 Intercritical Heat Affected Zone에서 발생하였으며 파단면에서 구상의조대한 M6C탄화물이 발견되었다. 모재는 molybdenum 주성분의 M2C, vanadium 주성분의 M4C3 및 chromium 주성분의 M23C6와 M7C3 탄화물이 존재하였다. 모의 실험 결과 준안정 상태인 M2C 탄화물은 85$0^{\circ}C$, 10oh에서 안정한 M6C탄화물로 변태하였다. M6C 탄화물은 주변의 molybdenum 농도를 떨어뜨려 강도의 저하를 가져오며 크립 기공의 발생 원인을 제공하였다.

  • PDF

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Steels -Part II : Carbide Morphology- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 - Part II : 탄화물 형태 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • In repaired weldment of ASTM A-470 class 8 high pressure stream turbine rotor steel, creep rupture life was studied in relation with carbide morphology. Carbides were identified using carbide extraction replica method. A retired rotor has molybdenum rich carbide $M_2C$, lndacochea vanadium rich carbide $M_4C_3$, and chromium rich carbides $M_{23}C_6$and $M_7C_3$. Weldments ruptured at ICHAZ showed that some of carbides have been transformed into spherical types of coarsened carbides at ruptured area. Those carbides were revealed as molybdenum rich $M_6C$ carbide and they provided cavitation sites due to molybdenum depletion around $(M_6C)$ carbide. However coarsened $M_6C$ and $M_{23}C_6$ carbides were observed at ruptured area in case of ruptured at CGHAZ.

  • PDF

Analysis of Creep Crack Growth at High-Temperature Components by Diffusive Growth Model of Grain Boundary Cavities (I)-Effect of Grain Boundary Cavitation on Stress Field and Crack Growth Rate- (입계기공의 확산성장 모델을 이용한 고온기기의 크립균열전파해석(1)-응력장 및 균열전파속도에 미치는 입계기공의 영향-)

  • Jeon, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1177-1185
    • /
    • 1996
  • The crack growth under creep condition is one of the major damage mechanisms which determines remaining life of the component operating at high temperatures. In this paper, the creep crack growth by grain boundary cavitation is studied, which is frequently observed failure mechanism for creep brittle materials. As a result of diffusive growth of creep cavities, it is shown that the crack-tip stress field is modified from the original stress distribution by the amount of singularity attenuation parameter which is function of crack growth rate and material properties. Also, the stress relaxation at crack-tip results in the extension of cavitating area by the load dump effect to meet the macroscopic force equilibrium conditdion.

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파해석(3)

  • Jeon, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1194-1201
    • /
    • 1996
  • For the case of creep-fatigue interaction, the damage zone developed in front of the growing crack-tip during creep regime is important because it can affect the damage mechanism to be occured by the following fatigue load. These are studied in theis paper through proper consideration of the cavitiy-size dependent sintering stress which is approximated by polynomials. It is shown that the inclination of reversed damage zone size with respect to the applied load parameter can be explained by considering realistic sintering stress distribution. However, the resultant stress field has $r^{1/2+\theta}$ singularity, regardliss of the profile of variable sintering stress, which is the same to that case solved for constant sintering stress.

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파 해석 (2)

  • Jeon, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1186-1193
    • /
    • 1996
  • The analytic solution of the stress field at creep crack in the presence of grain boundary caviation is to be obtained by solving the governing equation which was derived through the previous paper. The complex integral technique is used to slove the singular integral equation. under the help of the information about stress behaviors at the ends of integral region know by numerical solution. The resultant stress disstribution obtained shows the relaxed crack-tip singularity of $r^{1/2+\theta}$ due to the intervention of cavitation effect, otherwise, it should assumed to be $r^{1/2}$ singularity of linear elastic fracture mechanics with no cavitation.