• Title/Summary/Keyword: 크로스 멤버

Search Result 11, Processing Time 0.241 seconds

Forming of Flat Type Automotive Suspension Cross Member with High Strength Steel (고강도강을 이용한 평판형 승용차 서스펜션 크로스 멤버의 성형)

  • Yin, Jeong-Je
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • The flat type automotive cross members with high strength steel have advantages in light weight and fewer parts compared to the hump type cross members. But the complex part shape of the flat type cross member and the poor formability of high strength steel make it difficult to form the parts without forming defects, such as splits and wrinkles. The purpose of this study is to develop the flat type automotive cross member with high strength steel. For that purpose, drawing processes are evaluated using PAM-$STAMP^{TM}$ and proper draw die and blank designs are proposed. Using the proposed die and blank design, the flat type upper and lower cross member could be formed successfully without forming defects.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.

Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle (차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석)

  • Kim, Kee-Joo;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

A Study on Cross Member Strength Improvement of Korean Light Tactical Vehicle (한국형 전술차량 크로스멤버 강도개선에 관한 연구)

  • Kim, Sung-Gon;Kim, Sun-Jin;Shin, Cheol-Ho;Kang, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.758-764
    • /
    • 2019
  • The chassis of the Korean light tactical vehicle adopts a frame-on-body structure that uses lightweight design technology in terms of equipment operating characteristics. Military vehicles are operated in much harsher conditions compared to civilian vehicles, including mountainous terrain, especially steep slopes. Due to this characteristic, frame-welded cracks were found on some military vehicles. Therefore, in this paper, road damage analysis was conducted by identifying various roads including the military unit's road. The result confirmed that the operating environment of some military units' tactical road was much harsher than the endurance road test condition. A solution was derived through defect analysis, design review, and actual vehicle driving test. This study can be used as a reference by suggesting the development direction for the durability test of a new vehicle.

Numerical Analysis of Deck Frame for Lightweight Trucks (트럭경량화를 위한 Deck Frame의 수치해석 연구)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-133
    • /
    • 2018
  • To reduce fuel consumption, research on the weight reduction of vehicles is being actively carried out. Researchers have typically tried to replace metal materials with composites materials, but these materials did not satisfy the required strength and rigidity of a vehicle. Composites are usually not used because of their high cost. There are incomplete studies on lightweight trucks that transport cargo. Therefore, in this paper, we enhance the lightness and mechanical strength through design optimization of the deck frame for a lightweight truck. For that purpose, the side member and cross member, which are mounted on the lower part of the truck to assure the safety of the vehicle and support the luggage load, were targeted. The result of numerical analysis on the safety of the frame was obtained by changing the shape of each cross-section. To verify the numerical analysis, we compared it with the theoretical value of a cantilever beam. As a result, the suitability of the cross-sectional shapes of each frame was confirmed through numerical analysis.

Prolonging Lifetime of the LEACH Based Wireless Sensor Network Using Energy Efficient Data Collection (에너지 효율적인 데이터 수집을 이용한 LEACH 기반 무전 센서 네트워크의 수명 연장)

  • Park, Ji-Won;Moh, Sang-Man;Chung, Il-Yong;Bae, Yong-Geun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.175-183
    • /
    • 2008
  • In wireless sensor networks with ad hoc networking capability, sensor nodes are battery operated and are usually disposable once deployed. As a result, each sensor node senses and communicates with limited energy and, thus, energy efficiency has been studied as a key design factor which determines lifetime of a wireless sensor network, and it is more improved recently by using so-called cross-layer optimization technique. In this paper, we propose and implement a new energy saving mechanism that reduces energy consumption during data collection by controlling transmission power at sensor nodes and then measure its performance in terms of lifetime improvement for the wireless sensor network platform ZigbeX. When every sensor node transmits sensed data to its clusterhead, it controls its transmission power down to as low level as communication is possible, resulting in energy saving. Each sensor node controls its transmission power based on RSSI(Received Signal Strength Indicator) of the packet received from its clusterhead. In other words, the sensor node can save energy by controlling its transmission power down to an appropriate level that its clusterhead safely receives the packet it transmits. According to the repetitive experiment of the proposed scheme on the ZigbeX platform using the packet analyzer developed by us, it is observed that the network lifetime is prolonged by up to 21.9% by saying energy during the data collection occupying most amount of network traffic.

Design Enhancements for Automotive Integrated Shell Structures (차량 복합판형부품의 설계개선 기법들)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1103-1114
    • /
    • 2000
  • Recent attempt to enhance the safety against collision reshaped the simple shell structures into the integrated complex shell structures. Moreover, due to various regulations continuously tightened for environment protection, weight reduction of automobiles becomes an increasingly important issue. Auto parts lightening is mainly accomplished by more reasonable design, adoption of lighter materials and miniaturization of the auto bodies. Focusing on the locally enhanced design approach among the above three ways, we here attempt to develop a patching optimization method, and also to determine the thicknesses of an integrated shell structure, both bringing a specified amount of stress relaxation. We first select a cross member as a patching optimization model. Based on the finite element stress calculations, we relieve the stress of cross member by patching in two ways-nonuniform thickness patching and optimized uniform thickness patching, the latter of which is more effective in a practical point of view for the preset amount of stress relaxation. Selecting a box type subframe as another finite element analysis model, we then determine the thickness of each part by axiomatic design approach for a preset amount of stress relaxation. The patching methodology and the axiomatic approach adopted in this work can be applied to the other complex shell structures such as center member and lower control arm.

Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel (냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화)

  • J. Y. Kim;S. H. Kim;D. H. Choi;S. Hong
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.