• 제목/요약/키워드: 크랭크축 각속도

검색결과 9건 처리시간 0.023초

크랭크축 각속도의 변동을 이용한 실화 판정(2) - 실차 실험 (Misfire Detection by Using the Crankshaft Speed Fluctuation(2) : Vehicle Test)

  • 배상수;김세웅;임인건;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.90-99
    • /
    • 1996
  • To keep up with the regulation of OBD II(on board diagnostics II), many detection methods for engine misfire have been developed. Among them, the method of using the crankshaft speed fluctuation is the most noticeable in the point of view of lower cost and easier installation than any others. On the basis of the results obtained from the previous engine-dynamometer test, the integrating torque index (ITI) has been introduced. In this research, the instrumental and the interfacing systems to engine control unit(ECU) are developed for the vehicle test. Therefore, the vehicle and chassis-dynamometer test can be carried out in addition to the rough road test. From this test, the previousproposed method proved that it can be applied to the real vehicle.

  • PDF

크랭크축 각속도의 변동을 이용한 실화 판정(1) (Misfire Detection by Using the Crankshaft Speed Fluctuation(1))

  • 배상수;임병진;김세웅;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.23-31
    • /
    • 1996
  • The crankshaft speed fluctuation was measured every crank angle. In order to detect the misfire, the engine and the dynamometer were considered as a single- degree of freedom system. From this modeling, the detection criteria were derived and examined by the engine test. By this method the single misfire or multiple misfires can be detected. Even on the condition of low load and higher speed than 3000rpm, where it was difficult through the other methods, misfire detection was carried out steadily. From this results, the method proposed by this paper proved reasonable.

  • PDF

사이클 내 크랭크축 각속도의 변동 해석 (Analysis of the Crankshaft Speed Fluctuation in Intra-Cycle)

  • 배상수;임인건;김세웅;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.166-172
    • /
    • 1996
  • This paper presents the characteristics of the crankshaft speed fluctuations. To analyze them, the speed waveforms were measured both at the flywheel and at the front end of the engine. The speed waveform measured at the flywheel shows better result than at the front end one, because of the torsional vibration and the auxiliary components. And the patterns of the speed fluctuations are classified into three region, such as low load, middle load and high load region with the variations of the loads. Additionally, as the engine speeds increase and the loads decrease, the analysis of the speed becomes more difficult due to lower variation of the speed. And in all the regions, the main frequency component of the speed fluctuation is firing frequency.

  • PDF

크랭크축 각속도의 변동을 이용한 실린더내 압력 변화 추정(2) (Estimation of Cylinder Pressure Variation Using the Crankshaft Speed Fluctuation(2))

  • 임병진;박종범;임인건;배상수;김응서
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.42-50
    • /
    • 1995
  • This paper proposes a new method to investigate combustion phenomena using the variation of crankshaft speed, From the idea that the variation of crankshaft speed contains the information of combustion, the energy method is applied as a single degree of freedom. Through the comparison of measured and calculated crankshaft speed, the proposed energy model is proved to be effective. When the crankshaft speed is used in the energy equation, filtering of the speed is required. The frequency components of cylinder pressure are analyzed and the coefficients of Fourier series above the twelfth frequency of engine speed are considered as a noise. As an example of application of this research, some combustion analyses like mean effective pressure, heat release rate, and misfire detection were carried out.

  • PDF

크랭크축 각속도를 사용한 실린더내 압력 추정(1) (Estimation of Cylinder Pressure Using the Crank Shaft Speed(1))

  • 임병진;박종범;임인건;배상수;김응서
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.40-49
    • /
    • 1994
  • This paper describes the method to investigate combustion pressure in the cylinder without modifications of engine. Assuming engine dynamics as a single degree of freedom cylinder pressure is estimated using the variation of crank shaft speed. For this study pressure, crank shaft sped, and load are sampled by the crank angle. This study suggests the variation of crank shaft speed can be used as parameters of feedback engine control.

  • PDF

파이어링 상태의 일정 축 각속도에서 엔진 베어링의 마모 해석 - Part I: 베어링 마모발생 부위 파악 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed on a Firing State - Part I: Understanding of Bearing Wear Region)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.93-107
    • /
    • 2018
  • The purpose of Part I of this study is to find the potential region of wear scarring on engine journal bearings operating at a constant angular crank shaft velocity under firing conditions. To do this, we calculate the applied loads and eccentricities of a big-end journal bearing installed on a four-stroke and four-cylinder engine at every crank angle. Then, we find potential wear regions, such as a minimum oil film thickness, at every crank angle below most oil film thickness scarring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Thus, the wear region is defined as a set of each film thickness below the MOFTSW at every crank angle. In this region, the wear volume changes according to the wear depth and wear angle, depending on the minimum oil film thickness at every crank angle. The total wear volume is the summation during one cycle. Graphical views of the region in the two-dimensional coordinates show the crank angle and bearing angle along the journal center path, indicating the position of the minimum oil film thickness. The results of wear analysis show that the possible wear region is located at a few tens of angles behind the upper center of a big-end bearing at maximum power rpm.

크랭크축 각속도의 변동을 이용한 기관 이상 진단 방법 비교 (Comparison of engine fault diagnostic techniques using the crankshaft speed fluctuation)

  • 김세웅;배상수;김응서
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.2057-2066
    • /
    • 1996
  • ^In this paper, diagnostic technique for detecting the engine faults, especially misfire, are introduced and compared with each other under the same conditions. With all of them the instantaneous angular velocitys, measured at the flywheel, were analyzed. The techniques include the frequency analysis, auto-correlation function, velocity index, acceleration index, maximum acceleration index, and integrated torque index. Since the main driving components for the angular velocity fluctuation are both the pressure and the inertia torque, the component of the inertia torque in it must be excluded to extract the information of the combustion from the angular velocity. To do this, it is required to consider only the first half of the combustion period in the angular velocity fluctuations, which has never been proposed in the existing methods. On the basis of this fact, the results show that the most effective diagnostic technique is maximum acceleration index.

엔진 회전속도 변화를 이용한 상태진단 기법에 관한 연구 (Methodology of Engine Fitness Diagnosis Using Variation of Crankshaft Angular Speed)

  • 이병열;하승진;임옥택
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1529-1535
    • /
    • 2011
  • 해상 운송 분야와 발전 플랜트 분야에서 사용되는 엔진은 저 중속에서 운전효율향상이 계속해서 요구되고 있다. 엔진의 운전효율향상을 위해서는 엔진상태를 나타내는 변수의 확인이 반드시 필요하다. 지금까지 가스압력, 가스온도, 진동 등이 주요변수로써 제안되고 있으나 이 변수들은 응답속도와 진단 정확성에 한계가 있다. 본 연구에서는 엔진 크랭크 축 각속도 변화를 수치화한 EFR(Engine Fitness Ratio)을 검출하고, 이를 기반으로 엔진의 상태를 진단하는 기법을 개발하였다. EFR은 주파수 영역에서 특정 주파수의 비로써 정의되며 엔진상태를 나타낸다. EFR은 크랭크 각속도의 변화 거동으로부터 계산되며, EFR을 이용한 엔진 상태진단 기법을 실제 선박 추진용 저속엔진을 이용한 실험과 발전용 중속엔진을 이용한 해석을 수행하여 엔진의 이상 발생 감지가 가능함을 검증하였다.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.