• 제목/요약/키워드: 쿼드 로터

검색결과 85건 처리시간 0.022초

시간지연 제어기를 이용한 쿼드로터 시스템의 고도제어에 대한 연구 (Altitude Control of a Quad-rotor System by Using a Time-delayed Control Method)

  • 임정근;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.724-729
    • /
    • 2014
  • This paper presents the altitude control of a quadrotor system under the disturbance. The altitude is measured by an ultra sonic sensor attached at the bottom of the quadrotor system and the measured altitude data are used in the time-delayed controller. To test the robustness of the controller, a weight attached to the center of the system is dropped intentionally several times to cause disturbances to the system. Performances of the altitude control by the PID control and time-delayed control method are compared experimentally. Experimental studies are conducted to verify the outperformance of the time-delayed controller for controlling the altitude of the quadrotor system under disturbances.

CMG를 이용한 쿼드-로터의 자세제어 (Attitude Control of a Quad-rotor using CMG)

  • 오경현;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.695-700
    • /
    • 2014
  • In this paper, we utilize the CMG's momentum bias to control the roll/pitch attitude of the Quad-rotor. While the previous control approaches have used the thrust control approach, we design and add a new momentum controller (using CMG) in order to improve the transient response over the existing methods. The focal point of this paper is the design of a controller for a Quad-rotor's attitude using CMG. This leads to other tasks such as an identification of the model's parameters and mathematical nonlinear modeling. Then, the previous thrust controller is designed based on the linearized model. Finally, the overall system with our designed controller is implemented and tested in real time to show that the Quad-rotor is kept in a good balanced position faster than the traditional thrust-only control approach.

실시간 쿼드로터 자율주행과 원격제어 기법 (A Real Time Quadrotor Autonomous Navigation and Remote Control Method)

  • 손병락;강석민;이현;이동하
    • 대한임베디드공학회논문지
    • /
    • 제8권4호
    • /
    • pp.205-212
    • /
    • 2013
  • In recent, the demand of Unmanned Aerial Vehicles (UAVs) that can autonomous navigation and remote control has been increased in military, civil and commercial field. Particularly, existing researches focused on autonomous navigation method based on vanish point and remote control method based on event processing in indoor environments. However, the existing methods have some problems. For instance, a detected vanish point in intersection point has too much detection errors. In addition, the delay is increased in existing remote control system for processing images in real time. Thus, we propose improved vanish point algorithm by removing detection errors in intersection point. We also develop a remote control system with android platform by separating flying control and image process. Finally, we compare the proposed methods with existing methods to show the improvement of our approaches.

쿼드로터의 H-infinity 제어시스템 설계 (H-infinity Control System Design for a Quad-rotor)

  • 강태삼;윤광준;하태현;이기건
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.14-20
    • /
    • 2015
  • This paper describes the design of a robust H-infinity attitude controller for a quad-rotor. The linear model of a quad-rotor was estimated using PEM (Prediction Error Minimization) method with experimental input and output data. To design an attitude controller, an extended plant was constructed by adjusting several uncertainties and weighting functions. An H-infinity controller was obtained by applying H-infinity methodology to the extended plant. Through frequency-domain analysis, it was shown that the designed controller can overcome uncertainties up to 75% of the plant model. The performance and robustness of the controller were verified through time-domain simulation.

시간지연 제어기를 이용한 쿼드로터 시스템의 자세제어의 실험적 연구 (Experimental Studies of Attitude Control of a Quad-rotor System using a Time-delayed Controller)

  • 임정근;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.381-388
    • /
    • 2014
  • In this paper, the attitude of a quadrotor system is controlled by a time-delayed control method which uses the previous information to cancel out uncertainties in the system. Although the linear controller works for the attitude control, the robust performance against disturbance is relatively poor. Therefore, a time-delayed controller as a robust controller is used. Experimental studies are conducted to validate the performance by the time-delayed control method. The performances of both a linear controller and a time-delayed controller are compared.

쿼드로터 시스템의 자세제어를 위한 외란 관측기 설계 및 실험 (Design and Experimental Studies of a Disturbance Observer for Attitude Control of a Quad-rotor System)

  • 정승호;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1004-1010
    • /
    • 2013
  • In this paper, a simple design of a DOB (Disturbance Observer) for attitude control of a quad-rotor system is presented. A modified DOB structure from the conventional DOB is introduced to eliminate time-delay in the calculation. The proposed simple modification in the DOB configuration provides an efficiency in the calculation of the disturbance term such that the delayed calculation is not required. The performance of the modified DOB is evaluated through simulation studies. To confirm the simulation results, experimental studies of the attitude control of a quad-rotor system are conducted.

피드백 선형화를 이용한 쿼드로터의 자이로 효과 제어 (Gyro Effect Control of the Quadrotor UAV using Feedback Linearization)

  • 김영민;백운보
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.248-255
    • /
    • 2020
  • This paper introduces a Feedback Linearization (FL) controller to eliminate the gyro effect on a quadrotor UAV. In order to control the attitude of the quadrotor, the second model equation was differentiated to the 4-th order to induce the control input to be revealed, and then a new control input was derived based on the attitude transformation equation with a gyro effect. For the initial quick posture control of the quadrotor, the existing yaw control was replaced with a separate controller. The simulation was conducted with an experiment in which FL control to remove the gyro effect was applied to the quadrotor and an experiment without removing the gyro effect, from the experimental results, the maximum error seen in each axial direction of the quadrotor was x = 0.22 m, y = 0.20 m, z = 0.16 m. Through the proposed method, the effect of the FL controller for controlling the gyro effect of the quadrotor was confirmed.

미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어 (Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters)

  • 이근욱;박진배;최윤호
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

SLAM 기술을 활용한 외계행성 자율 주행 시스템 개념 설계

  • 문성태;한상혁;구철회;이훈희
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.176.1-176.1
    • /
    • 2012
  • 최근 무인 항공기 발전으로 영상 촬영 및 도로 정보 획득과 같은 다양한 분야에서 이를 활용하고 있다. 특히 무인 항공기가 점점 소형화되어가고 있고, 안전하게 이동하고, 한 지점에 머무를 수 있는 기능이 개발되어 최근 ArDrone과 같은 쿼드로터가 각광을 받고 있다. 이와 같은 기술을 위치를 파악할 수 없는 외계 공간에서 활용을 한다면 인간이 지나갈 수 없는 협소한 공간 혹은 위험한 장소를 대신하여 탐색할 수 있어 위험에 처한 인명을 구하는데 큰 도움을 줄 수 있다. 하지만 외계 공간에서는 GPS와 같은 위치를 인식할 수 없어 정해진 임무를 수행하기란 매우 어려운 일이다. 본 논문에서는 최근 각광받고 있는 SLAM 기술을 사용하여 3차원 지도를 생성하고, 이를 기반으로 실시간으로 영상을 인식하여 위치를 파악한 후 외계공간에서 로버를 사용하여 자율 주행이 가능한 시스템에 대한 개념 설계 내용을 설명한다.

  • PDF

면역 알고리즘을 이용한 쿼드로터 장애물회피 기술 (An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm)

  • 손병락;한창섭;이현;이동하
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.